题目内容

12.如图,在Rt△ABC中,∠C=90°,ED⊥BC,D为垂足,BD=3cm,DC=2cm,AB=6cm.求BE和EA的长.

分析 由∠C=90°,ED⊥BC,得到∠EDB=∠C=90°,证得DE∥AC,根据平行线分线段成比例定理即可得到结论.

解答 解:∵∠C=90°,ED⊥BC,
∴∠EDB=∠C=90°,
∴DE∥AC,
∴$\frac{BD}{BC}=\frac{BE}{AB}$,
∴$\frac{3}{5}=\frac{BE}{6}$,
∴BE=$\frac{18}{5}$,
∴AE=AB-BE=$\frac{12}{5}$.

点评 本题考查了平行线分线段成比例,熟练掌握平行线分线段成比例定理是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网