题目内容

12.计算:
(1)1-$\frac{1}{{2}^{2}}$=$\frac{3}{4}$;      
(2)(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)=$\frac{2}{3}$;
(3)(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)(1-$\frac{1}{{4}^{2}}$)=$\frac{5}{8}$;
请你利用你找到的简便方法计算:
(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)(1-$\frac{1}{{4}^{2}}$)…(1-$\frac{1}{201{4}^{2}}$)(1-$\frac{1}{201{5}^{2}}$).

分析 利用平方差公式计算找出计算规律解决问题即可.

解答 解:(1)1-$\frac{1}{{2}^{2}}$=(1-$\frac{1}{2}$)(1+$\frac{1}{2}$)=$\frac{1}{2}$×$\frac{3}{2}$=$\frac{3}{4}$;      
(2)(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)=(1-$\frac{1}{2}$)(1+$\frac{1}{2}$)(1-$\frac{1}{3}$)(1+$\frac{1}{3}$)=$\frac{1}{2}$×$\frac{3}{2}$×$\frac{2}{3}$×$\frac{4}{3}$=$\frac{2}{3}$;   
(3)(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)(1-$\frac{1}{{4}^{2}}$)=(1-$\frac{1}{2}$)(1+$\frac{1}{2}$)(1-$\frac{1}{3}$)(1+$\frac{1}{3}$)(1-$\frac{1}{4}$)(1+$\frac{1}{4}$)=$\frac{1}{2}$×$\frac{3}{2}$×$\frac{2}{3}$×$\frac{4}{3}$×$\frac{3}{4}$×$\frac{5}{4}$=$\frac{5}{8}$;   
请你利用你找到的简便方法计算:
(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)(1-$\frac{1}{{4}^{2}}$)…(1-$\frac{1}{201{4}^{2}}$)(1-$\frac{1}{201{5}^{2}}$)
=(1-$\frac{1}{2}$)(1+$\frac{1}{2}$)(1-$\frac{1}{3}$)(1+$\frac{1}{3}$)(1-$\frac{1}{4}$)(1+$\frac{1}{4}$)…(1-$\frac{1}{2014}$)(1+$\frac{1}{2014}$)(1-$\frac{1}{2015}$)(1+$\frac{1}{2015}$)
=$\frac{1}{2}$×$\frac{3}{2}$×$\frac{2}{3}$×$\frac{4}{3}$×$\frac{3}{4}$×$\frac{5}{4}$×…×$\frac{2013}{2014}$×$\frac{2015}{2014}$×$\frac{2014}{2015}$×$\frac{2016}{2015}$
=$\frac{1008}{2015}$.

点评 此题考查因式分解的实际运用,掌握平方差公式是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网