题目内容

7.如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.
(1)求证:△DCE≌△BFE;
(2)若CD=2,∠ADB=30°,求BE的长.

分析 (1)由AD∥BC,知∠ADB=∠DBC,根据折叠的性质∠ADB=∠BDF,所以∠DBC=∠BDF,得BE=DE,即可用AAS证△DCE≌△BFE;
(2)在Rt△BCD中,CD=2,∠ADB=∠DBC=30°,知BC=2$\sqrt{3}$,在Rt△BCD中,CD=2,∠EDC=30°,知CE=$\frac{2\sqrt{3}}{3}$,所以BE=BC-EC=$\frac{4\sqrt{3}}{3}$.

解答 解:(1)∵AD∥BC,
∴∠ADB=∠DBC,
根据折叠的性质∠ADB=∠BDF,∠F=∠A=∠C=90°,
∴∠DBC=∠BDF,
∴BE=DE,
在△DCE和△BFE中,
$\left\{\begin{array}{l}{∠BEF=∠DEC}\\{∠F=∠C}\\{BE=DE}\end{array}\right.$,
∴△DCE≌△BFE;

(2)在Rt△BCD中,
∵CD=2,∠ADB=∠DBC=30°,
∴BC=2$\sqrt{3}$,
在Rt△ECD中,
∵CD=2,∠EDC=30°,
∴DE=2EC,
∴(2EC)2-EC2=CD2
∴CE=$\frac{2\sqrt{3}}{3}$,
∴BE=BC-EC=$\frac{4\sqrt{3}}{3}$.

点评 本题考查了折叠的性质、全等三角形的判定和性质、等角对等边、平行线的性质以及勾股定理的综合运用,熟练的运用折叠的性质是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网