题目内容

9.在平面直角坐标系中,以A(2,4)为圆心,1为半径作⊙A,以B(3,5)为圆心,3为半径作⊙B,M、N分别是⊙A,⊙B上的动点,P为x轴上的动点,则PM+PN的最小值为(  )
A.$\sqrt{82}$-4B.$\sqrt{10}$-1C.6-2$\sqrt{2}$D.$\sqrt{17}$-3

分析 作⊙A关于x轴的对称⊙A′,连接BA′分别交⊙A′和⊙B于M、N,交x轴于P,如图,根据两点之间线段最短得到此时PM+PN最小,再利用对称确定A′的坐标,接着利用两点间的距离公式计算出A′B的长,然后用A′B的长减去两个圆的半径即可得到MN的长,即得到PM+PN的最小值.

解答 解:作⊙A关于x轴的对称⊙A′,连接BA′分别交⊙A′和⊙B于M、N,交x轴于P,如图,
则此时PM+PN最小,
∵点A坐标(2,4),
∴点A′坐标(2,-4),
∵点B(3,5),
∴A′B=$\sqrt{(2-3)^{2}+(-4-5)^{2}}$=$\sqrt{82}$,
∴MN=A′B-BN-A′M=5 $\sqrt{82}$-3-1=$\sqrt{82}$-4,
∴PM+PN的最小值为 $\sqrt{82}$-4.
故选A

点评 本题考查了圆的综合题:掌握与圆有关的性质和关于x轴对称的点的坐标特征;会利用两点之间线段最短解决线段和的最小值问题;会运用两点间的距离公式计算线段的长;理解坐标与图形性质.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网