题目内容
观察下列各式计算结果:
1-
=1-
=
=
×
1-
=1-
=
=
×
1-
=1-
=
=
×
1-
=1-
=
=
×
(1)用你发现的规律填写下列式子的结果:
1-
= .1-
= .1-
= .
(2)用你发现的规律计算:
(1-
)×(1-
)×(1-
)×…×(1-
)×(1-
).
1-
| 1 |
| 22 |
| 1 |
| 4 |
| 3 |
| 4 |
| 1 |
| 2 |
| 3 |
| 2 |
1-
| 1 |
| 32 |
| 1 |
| 9 |
| 8 |
| 9 |
| 2 |
| 3 |
| 4 |
| 3 |
1-
| 1 |
| 42 |
| 1 |
| 16 |
| 15 |
| 16 |
| 3 |
| 4 |
| 5 |
| 4 |
1-
| 1 |
| 52 |
| 1 |
| 25 |
| 24 |
| 25 |
| 4 |
| 5 |
| 6 |
| 5 |
(1)用你发现的规律填写下列式子的结果:
1-
| 1 |
| 102 |
| 1 |
| 1002 |
| 1 |
| 20142 |
(2)用你发现的规律计算:
(1-
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| 42 |
| 1 |
| 20132 |
| 1 |
| 20142 |
考点:规律型:数字的变化类
专题:
分析:(1)根据平方差公式分解因式进而求出即可;
(2)利用(1)中变化规律进而化简求出即可.
(2)利用(1)中变化规律进而化简求出即可.
解答:解:(1)∵1-
=1-
=
=
×
,
1-
=1-
=
=
×
,
1-
=1-
=
=
×
,
1-
=1-
=
=
×
,
∴1-
=
×
.1-
=
×
.1-
=
×
.
故答案为:
×
,
×
,
×
;
(2)(1-
)×(1-
)×(1-
)×…×(1-
)×(1-
)
=
×
×
×
×
×
×
×
×
×
=
.
| 1 |
| 22 |
| 1 |
| 4 |
| 3 |
| 4 |
| 1 |
| 2 |
| 3 |
| 2 |
1-
| 1 |
| 32 |
| 1 |
| 9 |
| 8 |
| 9 |
| 2 |
| 3 |
| 4 |
| 3 |
1-
| 1 |
| 42 |
| 1 |
| 16 |
| 15 |
| 16 |
| 3 |
| 4 |
| 5 |
| 4 |
1-
| 1 |
| 52 |
| 1 |
| 25 |
| 24 |
| 25 |
| 4 |
| 5 |
| 6 |
| 5 |
∴1-
| 1 |
| 102 |
| 9 |
| 10 |
| 11 |
| 10 |
| 1 |
| 1002 |
| 99 |
| 100 |
| 101 |
| 100 |
| 1 |
| 20142 |
| 2013 |
| 2014 |
| 2015 |
| 2014 |
故答案为:
| 9 |
| 10 |
| 11 |
| 10 |
| 99 |
| 100 |
| 101 |
| 100 |
| 2013 |
| 2014 |
| 2015 |
| 2014 |
(2)(1-
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| 42 |
| 1 |
| 20132 |
| 1 |
| 20142 |
=
| 1 |
| 2 |
| 3 |
| 2 |
| 2 |
| 3 |
| 4 |
| 3 |
| 3 |
| 4 |
| 5 |
| 4 |
| 2012 |
| 2013 |
| 2014 |
| 2013 |
| 2013 |
| 2014 |
| 2015 |
| 2014 |
=
| 2015 |
| 4028 |
点评:此题主要考查了数字变化规律,根据平方差公式得出数字之间的变化规律是解题关键.
练习册系列答案
相关题目
在给定下面的四个图案中,位似图形有( )

| A、1个 | B、2个 | C、3个 | D、4个 |