题目内容

5.在△ABC中,已知D为直线BC上一点,若∠ABC=x°,∠BAD=y°.
(1)当D为边BC上一点,并且CD=AB,x=40,y=30时,求证:AB=AC.
(2)若CD=CA=AB,请写出y与x的关系式及x的取值范围.(不写解答过程,直接写出结果)

分析 (1)首先在BC上取点E,使BE=CD=AB,连接AE,易证得AD=AE,继而可得△ADB≌△AEC(SAS),则可证得结论;
(2)①由CD=CA,可表示出∠ADC的度数,又由三角形外角的性质,可得∠ADC=∠B+∠BAD,则可得方程:90-$\frac{1}{2}$x=x+y,继而求得答案;
②先确定出∠D=$\frac{1}{2}$x,最后根据三角形的内角和即可得出结论.
③同①②的方法即可得出结论.

解答 (1)证明:如图,在BC上取点E,使BE=CD=AB,连接AE,
则∠AEB=∠EAB=$\frac{1}{2}$(180°-40°)=70°,
∴∠AEB=∠ADE=70°,
∴AD=AE,
∴∠ADB=∠AEC=180°-70°=110°,
∵BD=BE-DE,CE=CD-DE,
∴BD=EC,
在△ADB和△AEC中,$\left\{\begin{array}{l}{AD=AE}\\{∠ADB=∠AEC}\\{BD=CE}\end{array}\right.$
∴△ADB≌△AEC(SAS),
∴AB=AC.
(2)解:①当点D在边BC上时,
∵∠ABC=x°,CA=AB,
∴∠C=∠ABC=x°,
∵CD=CA,
∴∠ADC=∠CAD=$\frac{180°-∠C}{2}$=90°-$\frac{1}{2}$x°,
∵∠ADC=∠B+∠BAD,
∴90-$\frac{1}{2}$x=x+y,
即:y=-$\frac{3}{2}$x+90(0<x≤60)(取等号时B、D重合)
②当点D在BC的延长线上时,
如图1,∵AB=AC,
∴∠ACB=∠B=x°,
∵AC=CD,
∴∠ACB=2∠D,
∴∠D=$\frac{1}{2}$∠ACB=$\frac{1}{2}$x°,
在△ABD中,∠B+∠BAD+∠D=180°,
∴x+y+$\frac{1}{2}$x=180,
即:y=-$\frac{3}{2}$x+180,(0<x<90)
③当点D在CB延长线上时,如图2,
∵∠BAD=y°,∠ABC=x°,
∴∠D=∠ABC-∠BAD=x°-y°,
∵AB=AC,
∴∠C=∠ABC=x°,
∵CD=AC,
∴∠CAD=∠D=x°-y°,
在△ACD中,∠D+∠C+∠CAD=180°,
∴x-y+x+x-y=180,
∴3x-2y=180,
∴y=$\frac{3}{2}$x-90(60<x<90)(取等号时B、D重合).

点评 此题是三角形综合题,主要考查了三角形的内角和定理,三角形的外角的性质,解(1)的关键是作出辅助线判断出△ADB≌△AEC,解(2)的关键是分情况讨论,是一道中等难度的中考常考题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网