题目内容
如图,已知AC⊥AE,BD⊥BF,∠1=15°,∠2=15°,AE与BF平行吗?为什么?
如图,⊙A、⊙B、⊙C两两不相交,且它们的半径都是2,图中三个阴影部分的面积之和是 ____
如图,在平面直角坐标系中,已知点A 的坐标是(4,0),并且0A=OC=4OB,动点P在过A,B,C三点的抛物线上.
(1) 求抛物线的解析式;
(2)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作x轴的垂线,垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标;
(3) 是否存在点P,使得△ACP是以AC为直角边的直角三角形? 若存在,求出所有符合条件的点P的坐标; 若不存在,说明理由
一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为( )
A. B. C. D.
下列图案中,既是轴对称图形又是中心对称图形的是( )
某江段江水流经B,C,D三点拐弯后与原来流向相同,如图,若∠ABC=120°,∠BCD=80°,则∠EDC=___________°.
如图,AB∥EF∥CD,∠ABC=45°,∠CEF=155°,则∠BCE等于( )
A. 10° B. 15° C. 20° D. 25°
如图,将一朵小花放置在平面直角坐标系中第三象限内的甲位置,先将它绕原点O旋转180°到乙位置,再将它向下平移2个单位长到丙位置,则小花顶点A在丙位置中的对应点A′的坐标为 .
如图,矩形OABC的两边在坐标轴上,点A的坐标为(10,0),抛物线y=ax2+bx+4过点B,C两点,且与x轴的一个交点为D(﹣2,0),点P是线段CB上的动点,设CP=t(0<t<10).
(1)请直接写出B、C两点的坐标及抛物线的解析式;
(2)过点P作PE⊥BC,交抛物线于点E,连接BE,当t为何值时,∠PBE和Rt△OCD中的一个角相等?
(3)点Q是x轴上的动点,过点P作PM∥BQ,交CQ于点M,作PN∥CQ,交BQ于点N,当四边形PMQN为正方形时,求t的值.