题目内容

1.解方程组
(1)$\left\{\begin{array}{l}x=y\\ x+y=6\end{array}\right.$
(2)$\left\{\begin{array}{l}{3x+y=22}\\{4(x+y)-5(x-y)=2}\end{array}\right.$.

分析 (1)方程组利用代入消元法求出解即可;
(2)方程组整理后,利用加减消元法求出解即可.

解答 解:(1)$\left\{\begin{array}{l}{x=y①}\\{x+y=6②}\end{array}\right.$,
把①代入②得:2y=6,即y=3,
把y=3代入①得:x=3,
则方程组的解为$\left\{\begin{array}{l}{x=3}\\{y=3}\end{array}\right.$;
(2)方程组整理得:$\left\{\begin{array}{l}{3x+y=22①}\\{-x+9y=2②}\end{array}\right.$.
①+②×3得:28y=28,即y=1,
把y=1代入②得:x=7,
则方程组的解为$\left\{\begin{array}{l}{x=7}\\{y=1}\end{array}\right.$.

点评 此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网