ÌâÄ¿ÄÚÈÝ
18£®£¨1£©ÇëÄãÖ±½Óд³öDµã×ø±ê¡¢AµãµÄ¡°ÓÒÆ½ÒƾàÀ롱£¨AEµÄ³¤¶È£©¡¢Ö±ÏßABµÄ±í´ïʽ£»
£¨2£©ÈôÏß¶ÎABÉÏÓÐÒ»µãPµÄ¡°ÓÒÆ½ÒƾàÀ롱PF=6£¬ÊÔÇó³öPµãµÄ×ø±ê£»
£¨3£©ÈôijµãµÄ¡°ÓÒÆ½ÒƾàÀ롱²»³¬¹ý6£¬Ôò³Æ¸ÃµãΪ¡°°²È«µã¡±£®ÔÚ¡÷ABOµÄÄÚ²¿»ò±ßÉϵÄËùÓС°°²È«µã¡±¼¯ÖÐÔÚÒ»¶¨µÄÇøÓò£¬ÊÔÇó³öÕâ¸öÇøÓòµÄÃæ»ý£®
·ÖÎö £¨1£©¸ù¾Ý×Ô±äÁ¿Ó뺯ÊýÖµµÄ¶ÔÓ¦¹ØÏµ£¬¿ÉµÃD¡¢EµãµÄ×ø±ê£¬¸ù¾ÝƽÐÐÓÚxÖáµÄÖ±ÏßÉÏÁ½µã¼äµÄ¾àÀëÊǽϴóµÄºá×ø±ê¼õ½ÏСµÄºá×ø±ê£¬¿ÉµÃAEµÄ³¤£¬ÔÙ¸ù¾Ý´ý¶¨ÏµÊý·¨£¬¿ÉµÃABµÄ½âÎöʽ£»
£¨2£©¸ù¾ÝµãÔÚÖ±ÏßÉÏ£¬¿ÉµÃP£¬FµãµÄ×ø±ê£¬¸ù¾ÝPFµÄ¾àÀ룬¿ÉµÃ¹ØÓÚbµÄ·½³Ì£¬¸ù¾Ý½â·½³Ì£¬¿ÉµÃ´ð°¸£»
£¨3£©¸ù¾ÝƽÐÐÏß¼äµÄƽÐÐÏß¶ÎÏàµÈ£¬¿ÉµÃPOÉϵĵãÊǰ²È«µã£¬Ïß¶ÎAPÉϵĵãÊǰ²È«µã£¬ÔÙ¸ù¾ÝÈý½ÇÐεÄÃæ»ý¹«Ê½£¬¿ÉµÃ´ð°¸£®
½â´ð ½â£º£¨1£©µ±x=0ʱ£¬y=6£¬¼´D£¨0£¬6£©£»
µ±y=4ʱ£¬-x+6=4£¬½âµÃx=2£¬¼´E£¨2£¬4£©£¬
AEµÄ³¤Îª2-0=2£»
ÉèABµÄ½âÎöʽΪy=kx+b£¬½«A£¨0£¬4£©£¬B£¨-2£¬0£©´úÈ뺯Êý½âÎöʽ£¬µÃ
$\left\{\begin{array}{l}{-2k+b=0}\\{b=4}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{k=2}\\{b=4}\end{array}\right.$£¬
Ö±ÏßABµÄ±í´ïʽy=2x+4£»
£¨2£©ÓÉÏß¶ÎABÉÏÓÐÒ»µãP£¬ÉèP£¨$\frac{b-4}{2}$£¬b£©£¬
ÓÉFÔÚCDÉÏ£¬ÉèF£¨6-b£¬b£©£®
ÓÉPFµÄ³¤Îª6£¬µÃ
6-b-$\frac{b-4}{2}$=6£®
½âµÃb=$\frac{4}{3}$£¬
$\frac{b-4}{2}$=$\frac{\frac{4}{3}-4}{2}$=-$\frac{4}{3}$£¬
¼´P£¨-$\frac{4}{3}$£¬$\frac{4}{3}$£©£»
£¨3£©Èçͼ£º![]()
¹ýPµãƽÐÐCDµÄ½âÎöʽΪy=-x£¬
POÉϵĵãÊǰ²È«µã£¬APÉϵĵãÊǰ²È«µã£¬
¡÷APOÊǰ²È«ÇøÓò£¬
S¡÷APO=$\frac{1}{2}$AO•|Px|=$\frac{1}{2}$¡Á4¡Á|-$\frac{4}{3}$|=$\frac{8}{3}$£®
µãÆÀ ±¾Ì⿼²éÁËÒ»´Îº¯Êý×ÛºÏÌ⣬ÀûÓÃÁË×Ô±äÁ¿Ó뺯ÊýÖµµÄ¶ÔÓ¦¹ØÏµÇóµãµÄ×ø±ê£¬£¨2£©ÀûÓÃÆ½ÐÐÓÚxÖáµÄÖ±ÏßÉÏÁ½µã¼äµÄ¾àÀëÊǽϴóµÄºá×ø±ê¼õ½ÏСµÄºá×ø±êµÃ³ö¹ØÓÚbµÄ·½³ÌÊǽâÌâ¹Ø¼ü£¬£¨3£©ÀûÓÃÁËÆ½ÐÐÏß¼äµÄƽÐÐÏß¶ÎÏàµÈ³öµÃPOÉϵĵãÊǰ²È«µãÊǽâÌâ¹Ø¼ü£®
| A£® | ¡À2 | B£® | ¡À4 | C£® | 2 | D£® | 4 |
£¨1£©ÓëxÖáµÄ½»µã×ø±êÊÇ£¨-1£¬0£©£¬£¨3£¬0£©£¬¶¥µã×ø±êÊÇ£¨1£¬-4£©£»
£¨2£©ÔÚ×ø±êϵÖÐÀûÓÃÃèµã·¨»³ö´ËÅ×ÎïÏߣ»
| x | ¡ | ¡ | |||||
| y | ¡ | ¡ |