题目内容

20.在数轴上有A、B两点,所表示的数分别为n,n+6,A点以每秒5个单位长度的速度向右运动,同时B点以每秒3个单位长度的速度也向右运动,设运动时间为t 秒.
(1)当n=1时,则AB=|2t-6|;
(2)当t 为何值时,A、B两点重合;
(3)在上述运动的过程中,若P为线段AB的中点,数轴上点C所表示的数为n+10是否存在t 的值,使得线段PC=4,若存在,求t 的值;若不存在,请说明理由.

分析 找出运动时间为t秒时,点A、B表示的数.
(1)将n=1代入点A、B表示的数中,再根据两点间的距离公式即可得出结论;
(2)根据点A、B重合即可得出关于t的一元一次方程,解之即可得出结论;
(3)根据点A、B表示的数结合点P为线段AB的中点即可找出点P表示的数,根据PC=4即可得出关于t的一元一次方程,解之即可得出结论.

解答 解:当运动时间为t 秒时,点A表示的数为5t+n,点B表示的数为3t+n+6.
(1)当n=1时,点A表示的数为5t+1,点B表示的数为3t+7,
AB=|5t+1-(3t+7)|=|2t-6|.
故答案为:|2t-6|.
(2)根据题意得:5t+n=3t+n+6,
解得:t=3.
∴当t 为3时,A、B两点重合.
(3)∵P为线段AB的中点,
∴点P表示的数为(5t+n+3t+n+6)÷2=4t+n+3,
∵PC=4,
∴|4t+n+3-n-10|=|4t-7|=4,
解得:t=$\frac{11}{4}$或t=$\frac{3}{4}$.
∴存在t的值,使得线段PC=4,此时t的值为$\frac{11}{4}$或$\frac{3}{4}$.

点评 本题考查了一元一次方程的应用、两点间的距离、数轴以及列代数式,解题的关键是:(1)找出点A、B表示的数;(2)根据两点重合列出关于t的一元一次方程;(3)根据PC列出关于t的含绝对值符号的一元一次方程.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网