题目内容

11.已知,如图,在四边形ABCD中,AB∥CD,延长BC至点E,连接AE交CD于点F,使∠BAC=∠DAE,∠ACB=∠CFE
(1)求证:∠BAF=∠CAD;
(2)求证:AD∥BE;
(3)若BF平分∠ABC,请写出∠AFB与∠CAF的数量关系2∠AFB+∠CAF=180°..(不需证明)

分析 (1)根据∠BAC=∠DAE,运用等式性质即可得出∠BAC+∠CAF=∠DAE+∠CAF,进而得到∠BAF=∠CAD;
(2)根据∠BAC=∠DAF,∠ACB=∠CFE=∠AFD,可得∠B=∠D,最后根据∠B+∠BCD=180°,可得∠D+∠BCD=180°,进而判定AD∥BE;
(3)根据AD∥BE,可得∠E=∠1=∠2,再根据BF平分∠ABC,可得∠3=∠4,根据∠AFB是△BEF的外角,得出∠AFB=∠4+∠E=∠4+∠1,即∠AFB=3+∠2,最后根据AD∥BC,得到∠ABC+∠BAD=180°,进而得到2∠AFB+∠CAF=180°.

解答 解:(1)∵∠BAC=∠DAE,
∴∠BAC+∠CAF=∠DAE+∠CAF,
∴∠BAF=∠CAD;

(2)∵∠BAC=∠DAF,∠ACB=∠CFE=∠AFD,
∴∠B=∠D,
∵AB∥CD,
∴∠B+∠BCD=180°,
∴∠D+∠BCD=180°,
∴AD∥BE;

(3)如图2,∵AD∥BE,
∴∠E=∠1=∠2,
∵BF平分∠ABC,
∴∠3=∠4,
∵∠AFB是△BEF的外角,
∴∠AFB=∠4+∠E=∠4+∠1,
∴∠AFB=3+∠2,
又∵AD∥BC,
∴∠ABC+∠BAD=180°,
∴∠3+∠4+∠1+∠CAF+∠2=180°,
即2∠AFB+∠CAF=180°.
故答案为:2∠AFB+∠CAF=180°.

点评 本题主要考查了平行线的性质与判定,三角形外角性质,角平分线的定义以及三角形内角和定理的综合应用,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网