题目内容

14.解方程组:$\left\{\begin{array}{l}{4{x}^{2}-{y}^{2}=0}\\{3{x}^{2}-xy+x+2y+6=0}\end{array}\right.$.

分析 由①得:2x-y=0,2x+y=0,这样原方程组化成两个二元二次方程组,求出每个方程组的解即可.

解答 解:$\left\{\begin{array}{l}{4{x}^{2}-{y}^{2}=0①}\\{3{x}^{2}-xy+x+2y+6=0②}\end{array}\right.$
由①得:2x-y=0,2x+y=0,
原方程组化为:①$\left\{\begin{array}{l}{2x-y=0}\\{3{x}^{2}-xy+x+2y+6=0}\end{array}\right.$,②$\left\{\begin{array}{l}{2x+y=0}\\{3{x}^{2}-xy+x+2y+6=0}\end{array}\right.$,
解方程组①得:$\left\{\begin{array}{l}{{x}_{1}=-2}\\{{y}_{1}=-4}\end{array}\right.$,$\left\{\begin{array}{l}{{x}_{2}=-3}\\{{y}_{2}=-6}\end{array}\right.$,方程组②无解,
所以原方程组的解为:$\left\{\begin{array}{l}{{x}_{1}=-2}\\{{y}_{1}=-4}\end{array}\right.$,$\left\{\begin{array}{l}{{x}_{2}=-3}\\{{y}_{2}=-6}\end{array}\right.$.

点评 本题考查了解高次方程组,能把高次方程组转化成二元二次方程组(降次)是解此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网