题目内容

8.如图,在正方形ABCD中,G是BC上任意一点,连接AG,DE⊥AG于E,BF∥DE交AG于F,探究线段AF、BF、EF三者之间的数量关系,并说明理由.

分析 根据正方形的性质,可得AB=AD,∠DAB=∠ABC=90°,根据余角的性质,可得∠ADE=∠BAF,根据全等三角形的判定与性质,可得BF与AE的关系,再根据等量代换,可得答案.

解答 解:线段AF、BF、EF三者之间的数量关系AF=BF+EF,理由如下:
∵四边形ABCD是正方形,
∴AB=AD,∠DAB=∠ABC=90°.
∵DE⊥AG于E,BF∥DE交AG于F,
∴∠AED=∠DEF=∠AFB=90°,
∴∠ADE+∠DAE=90°,∠DAE+∠BAF=90°,
∴∠ADE=∠BAF.
在△ABF和△DAE中$\left\{\begin{array}{l}{∠BAF=∠ADE}\\{∠AFB=∠DEA}\\{AB=AD}\end{array}\right.$,
∴△ABF≌△DAE  (AAS),
∴BF=AE.
∵AF=AE+EF,
AF=BF+EF.

点评 本题考查了全等三角形的判定与性质,利用了正方形的性质,余角的性质,全等三角形的判定与性质,等量代换.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网