题目内容
16.解方程组:(1)$\left\{\begin{array}{l}{x+y=1}\\{2x-y=5}\end{array}\right.$
(2)$\left\{\begin{array}{l}{2x+3y+z=6}\\{x-y+2z=-1}\\{x+2y-z=5}\end{array}\right.$.
分析 (1)方程组利用加减消元法求出解即可;
(2)方程组利用加减消元法求出解即可.
解答 解:(1)$\left\{\begin{array}{l}{x+y=1①}\\{2x-y=5②}\end{array}\right.$,
①+②得:3x=6,即x=2,
把x=2代入①得:y=-1,
则方程组的解为$\left\{\begin{array}{l}{x=2}\\{y=-1}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{2x+3y+z=6①}\\{x-y+2z=-1②}\\{x+2y-z=5③}\end{array}\right.$,
①×2-②得:3x+7y=13④,
①+③得:3x+5y=11⑤,
⑤-④得:-2y=-2,即y=1,
把y=1代入④得:x=2,
把x=2,y=1代入①得:z=-1,
则方程组的解为$\left\{\begin{array}{l}{x=2}\\{y=1}\\{z=-1}\end{array}\right.$.
点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
练习册系列答案
相关题目
4.已知多项式(x2-mx+1)(x-2)的积中不含x的二次项系数,则m的值是( )
| A. | 1 | B. | -1 | C. | -2 | D. | 2 |