题目内容
| A、△ACE一定是等腰三角形 |
| B、△ACE一定是等边三角形 |
| C、△ACE一定是锐角三角形 |
| D、△ACE不可能是等腰直角三角形 |
考点:矩形的性质,平移的性质
专题:
分析:根据矩形的对角线相等的性质和平移的性质进行判断.
解答:解:∵四边形ABCD是矩形,
∴AC=BD.
又△BEC是由△ABD沿AB向下平移得到的,
∴BD=EC.
∴AC=CE,
∴△ACE一定是等腰三角形.
故A正确;
当AD=2AB时,AE=AC=EC成立,否则不成立.故B错误;
当AD=CD时,矩形ABCD是正方形,则∠ACE=90°,即△ACE是等腰直角三角形.故C、D错误;
故选:A.
∴AC=BD.
又△BEC是由△ABD沿AB向下平移得到的,
∴BD=EC.
∴AC=CE,
∴△ACE一定是等腰三角形.
故A正确;
当AD=2AB时,AE=AC=EC成立,否则不成立.故B错误;
当AD=CD时,矩形ABCD是正方形,则∠ACE=90°,即△ACE是等腰直角三角形.故C、D错误;
故选:A.
点评:本题考查了矩形的性质、平移的性质.解答该题时,需要理清矩形与正方形间的关系.
练习册系列答案
相关题目
下列式子中,表示y是x的反比例函数的是( )
| A、xy=1 | ||
B、y=
| ||
C、y=
| ||
D、y=
|
| A、4 | ||||
| B、3 | ||||
| C、2 | ||||
D、
|
若直角三角形中,斜边的长为13,一条直角边长为5,则这个三角形的面积是( )
| A、60 | B、30 | C、20 | D、32 |
| A、4cm | B、5cm |
| C、6cm | D、8cm |