题目内容
若⊙A的半径是5,圆心A的坐标为(3,4),点P的坐标为(5,8),则点P的位置在( )
A. ⊙A内 B. ⊙A上 C. ⊙A外 D. 不能确定
圆周长C与圆的半径r之间的关系为C=2πr,其中常量是______.
(本小题11分)完成下列推理说明:
(1)如图,已知∠1=∠2,∠B=∠C,可推出AB∥CD.理由如下:
因为∠1=∠2(已知),且∠1=∠4(___________)
所以∠2=∠4(等量代换)
所以CE∥BF(___________)
所以∠___=∠3(_________________)
又因为∠B=∠C(已知)
所以∠3=∠B(等量代换)
所以AB∥CD(______________________))
(2)如图,已知∠B+∠BCD=180°,∠B=∠D.求证:∠E=∠DFE.
证明:∵∠B+∠BCD=180°( 已知 ),
∴AB∥CD (__________)
∴∠B= ____(_______________________)
又∵∠B=∠D( 已知 ),
∴ ∠_____= ∠__________ ( 等量代换 )
∴AD∥BE(_____________________)
∴∠E=∠DFE(_____________________)
方程组的解为( )
A. B. C. D.
在一个不透明的口袋里装有分别标有数字-3、-1、0、2的四个小球,除数字不同外,小球没有任何区别,每次试验先搅拌均匀.
(1)从中任取一球,求抽取的数字为正数的概率为 ;
(2)从中先任取一球(不放回),将球上的数字记为a,再从中任取一球,将球上的数字记为b,求的概率(用列表或树状图说明理由).
二次函数的图象如图,若一元二次方程有实数根,则的最大值为_______.
已知Rt△ABC中,∠C=90°,AB=20,∠A=45°,则BC=__________
如图,OA,OC都是⊙O的半径,点B在OC的延长线上,BA与⊙O相切于点A,连接AC,若AC=4, ,则⊙O的半径长为______;
初三年(4)班要举行一场毕业联欢会,主持人同时转动下图中的两个转盘,由一名同学在转动前来判断两个转盘上指针所指的两个数字之和是奇数还是偶数,如果判断错误,他就要为大家表演一个节目;如果判断正确,他可以指派别人替自己表演节目.现在轮到小明来选择,小明不想自己表演,于是他选择了偶数.小明的选择合理吗?从概率的角度进行分析(要求用树状图或列表方法求解)