题目内容

6.方程组$\left\{\begin{array}{l}{x-z=4}\\{z-2y=-1}\\{x+y-z=-1}\end{array}\right.$的解是(  )
A.$\left\{\begin{array}{l}{x=7}\\{y=-5}\\{z=-11}\end{array}\right.$B.$\left\{\begin{array}{l}{x=-7}\\{y=5}\\{z=-11}\end{array}\right.$C.$\left\{\begin{array}{l}{x=-7}\\{y=-5}\\{z=-11}\end{array}\right.$D.$\left\{\begin{array}{l}{x=7}\\{y=-5}\\{z=11}\end{array}\right.$

分析 方程组利用加减消元法求出解即可.

解答 解:$\left\{\begin{array}{l}{x-z=4①}\\{z-2y=-1②}\\{x+y-z=-1③}\end{array}\right.$,
③-①得:y=-5,
把y=-5代入②得:z=-11,
把z=-11代入①得:x=-7,
则方程组的解为$\left\{\begin{array}{l}{x=-7}\\{y=-5}\\{z=-11}\end{array}\right.$,
故选C.

点评 此题考查了解三元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网