题目内容

(1)如图(1),△ABC内接于⊙O,AB为直径,∠CAE=∠B,试说明AE与⊙O相切于点A.
(2)在图(2)中,若AB为非直径的弦,∠CAE=∠B,AE还与⊙O相切于点A吗?请说明理由.
考点:切线的判定
专题:证明题
分析:(1)根据圆周角定理由AB为直径得∠ACB=90°,所以∠B+∠BAC=90°,由于∠CAE=∠B,则∠CAE+∠BAC=90°,所以OA⊥AE,则可根据切线的判定定理得到AE与⊙O相切于点A;
(2)作直径AD,根据圆周角定理得到∠B=∠D,则可与(1)中的证明方法一样得到AE与⊙O相切于点A.
解答:证明:(1)∵AB为直径,
∴∠ACB=90°,
∴∠B+∠BAC=90°,
而∠CAE=∠B,
∴∠CAE+∠BAC=90°,即∠BAE=90°,
∴OA⊥AE,
∴AE与⊙O相切于点A;
(2)AE还与⊙O相切于点A.理由如下:
作直径AD,如图2,
∴∠D+∠DAC=90°,
∵∠B=∠D,
而∠CAE=∠B,
∴∠CAE+∠DAC=90°,即∠DAE=90°,
∴OA⊥AE,
∴AE与⊙O相切于点A.
点评:本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了圆周角定理.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网