题目内容

10.如图,已知△ABC的三个顶点的坐标分别为A(-2,3)、B(-6,0),C(-1,0).
(1)将△ABC向右平移5个单位,再向下平移4个单位得△A1B1C1,图中画出△A1B1C1,平移后点A的对应点A1的坐标是(3,-1).
(2)将△ABC沿x轴翻折△A2BC,图中画出△A2BC,翻折后点A对应点A2坐标是(-2,-3).
(3)将△ABC向左平移2个单位,则△ABC扫过的面积为13.5.

分析 (1)直接利用平移的性质得出对应点位置进而得出答案;
(2)利用关于x轴对称点的性质进而得出对应点位置;
(3)利用平移的性质可得△ABC扫过的面积为△A′B′C′+平行四边形A′C′CA的面积.

解答 解:(1)如图所示:△A1B1C1,即为所求,平移后点A的对应点A1的坐标是:(3,-1);
故答案为:(3,-1);

(2)如图所示:△A2BC,即为所求,翻折后点A对应点A2坐标是:(-2,-3);
故答案为:(-2,-3);

(3)将△ABC向左平移2个单位,则△ABC扫过的面积为:
S△A′B′C′+S平行四边形A′C′CA
=$\frac{1}{2}$×3×5+2×3
=13.5.
故答案为:13.5.

点评 此题主要考查了平移变换以及三角形面积求法,正确得出平移后对应点位置是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网