题目内容

15.如图,在△ABC中,∠A=70°,AC=BC,以点B为旋转中心把△ABC按顺时针旋转α度,得到△A′BC′,点A′恰好落在AC上,连接CC′,则∠ACC′=110°.

分析 由∠A=70°,AC=BC,可知∠ACB=40°,根据旋转的性质,AB=BA′,BC=BC′,∠CBC′=∠α=40°,∠BCC′=70°,于是∠ACC′=∠ACB+∠BCC′=110°.

解答 解:∵∠A=70°,AC=BC,
∴∠BCA=40°,
根据旋转的性质,AB=BA′,BC=BC′,
∴∠α=180°-2×70°=40°,
∵∠∠CBC′=∠α=40°,
∴∠BCC′=70°,
∴∠ACC′=∠ACB+∠BCC′=110°;
故答案为:110°.

点评 本题主要考查了旋转的性质、等腰三角形的性质,熟练掌握旋转前后的图形对应边相等、旋转角相等是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网