题目内容
计算:(
a3-0.9ax3)÷
ax3.
| 6 |
| 5 |
| 3 |
| 5 |
考点:整式的除法
专题:
分析:利用乘法分配律求解即可.
解答:解:(
a3-0.9ax3)÷
ax3
=
a3×
-
ax3×
,
=
-
.
| 6 |
| 5 |
| 3 |
| 5 |
=
| 6 |
| 5 |
| 5 |
| 3ax3 |
| 9 |
| 10 |
| 5 |
| 3ax3 |
=
| 2a2 |
| x3 |
| 3 |
| 2 |
点评:本题主要考查了整式的除法,解题的关键是利用乘法分配律求解.
练习册系列答案
相关题目
下面是按一定规律排列的一列数:
第1个数:
-(1+
);
第2个数:
-(1+
)(1+
)(1+
);
第3个数:
-(1+
)(1+
)(1+
)(1+
)(1+
);
…
第n个数:
-(1+
)(1+
)(1+
)…(1+
).
那么,在第2011个数、第2012个数、第2013个数、第2014个数中,最大的数是( )
第1个数:
| 1 |
| 2 |
| -1 |
| 2 |
第2个数:
| 1 |
| 3 |
| -1 |
| 2 |
| (-1)2 |
| 3 |
| (-1)3 |
| 4 |
第3个数:
| 1 |
| 4 |
| -1 |
| 2 |
| (-1)2 |
| 3 |
| (-1)3 |
| 4 |
| (-1)4 |
| 5 |
| (-1)5 |
| 6 |
…
第n个数:
| 1 |
| n+1 |
| -1 |
| 2 |
| (-1)2 |
| 3 |
| (-1)3 |
| 4 |
| (-1)2n-1 |
| 2n |
那么,在第2011个数、第2012个数、第2013个数、第2014个数中,最大的数是( )
| A、第2011个数 |
| B、第2012个数 |
| C、第2013个数 |
| D、第2014个数 |
| 6 |
| 3 |
A、22+6
| ||
B、20+8
| ||
C、18+10
| ||
D、16+12
|
| A、1 | B、2 | C、3 | D、4 |
在数轴上表示数a的点到原点的距离是3个单位长度,则-a+|a|的值为( )
| A、0 | B、3 | C、0或6 | D、0或-6 |