题目内容

如图,△ABC内接于⊙O,已知AB=AC,点M为劣弧BC上任意一点,且∠AMC=60°.
(1)若BC=6,求△ABC的面积;
(2)若点D为AM上一点,且BD=DM,判断线段MA、MB、MC三者之间有怎样的数量关系,并证明你的结论.
考点:圆周角定理,全等三角形的判定与性质,等边三角形的判定与性质,勾股定理,垂径定理
专题:
分析:(1)根据圆周角定理得到∠ABC=∠AMC=60°,加上AB=AC,则可判断△ABC为等边三角形,然后根据等边三角形的性质计算其面积;
(2)先判断△BDM为正三角形得到BD=BM,由∠ABC=∠DBM=60°得到∠ABD=∠CBM,则可根据“SAS”判断△ABD≌△CBM,所以AD=CM,于是MA=MD+AD=MB+MC.
解答:解:(1)∵∠ABC=∠AMC=60°,
而AB=AC,
∴△ABC为等边三角形,
∴△ABC的面积=
3
4
BC2=
3
4
×36=9
3


(2)MA=MB+MC,理由如下:
∵BD=DM,∠AMB=∠ACB=60°,
∴△BDM为正三角形,
∴BD=BM,
∵∠ABC=∠DBM=60°,
∴∠ABC-∠DBC=∠DBM-∠DBC,
∴∠ABD=∠CBM,
在△ABD与△CBM 中,
AB=CB
∠ABD=∠CBM
BD=BM

∴△ABD≌△CBM(SAS),
∴AD=CM,
∴MA=MD+AD=MB+MC.
点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等边三角形的判定与性质以及三角形全等的判定与性质.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网