题目内容
20.如图,由全等三角形拼出的一系列图形中,第n个图形由n+1个全等三角形拼成,则第4个图形中平行四边形的个数为6;第2n-1个图形中平行四边形的个数为n2.分析 根据图形易得:n=1时有1=12个平行四边形;n=2时有2=1×2个平行四边形;n=3时有4=22个平行四边形;n=4时有6=2×3个平行四边形;由此可知应当分n的奇偶,得出答案即可.
解答 解:∵n=1时有1=12个平行四边形;
n=2时有2=1×2个平行四边形;
n=3时有4=22个平行四边形;
n=4时有6=2×3个平行四边形;
…
∴当为第2k-1(k为正整数)个图形时,有k2个平行四边形,
当第2k(k为正整数)个图形时,有k(k+1)个平行四边形,
第2n-1个图形中平行四边形的个数为n2.
故答案为:6,n2.
点评 本题考查了图形的变化规律,通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.
练习册系列答案
相关题目