题目内容

15.如图,在半径AC为2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB于点D,连接CD,则图中阴影部分的面积是π-1.

分析 已知BC为直径,则∠CDB=90°,在等腰直角三角形ABC中,CD垂直平分AB,CD=DB,D为半圆的中点,阴影部分的面积可以看做是扇形ACB的面积与△ADC的面积之差.

解答 解:在Rt△ACB中,AB=$\sqrt{{2}^{2}+{2}^{2}}$=2$\sqrt{2}$,
∵BC是半圆的直径,
∴∠CDB=90°,
在等腰Rt△ACB中,CD垂直平分AB,CD=BD=$\sqrt{2}$,
∴D为半圆的中点,
S阴影部分=S扇形ACB-S△ADC=$\frac{1}{4}$π×22-$\frac{1}{2}$×($\sqrt{2}$)2=π-1.
故答案为π-1.

点评 本题考查扇形面积的计算公式及不规则图形面积的求法,掌握面积公式是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网