题目内容

19.如图,正比例函数y=kx(k≠0)的图象经过点A(2,4),AB⊥x轴于点B,将△ABO绕点A逆时针旋转90°得到△ADC,则直线AC的函数表达式为y=-0.5x+5.

分析 直接把点A(2,4)代入正比例函数y=kx,求出k的值即可;由A(2,4),AB⊥x轴于点B,可得出OB,AB的长,再由△ABO绕点A逆时针旋转90°得到△ADC,由旋转不变性的性质可知DC=OB,AD=AB,故可得出C点坐标,再把C点和A点坐标代入y=ax+b,解出解析式即可.

解答 解:∵正比例函数y=kx(k≠0)经过点A(2,4)
∴4=2k,
解得:k=2,
∴y=2x;
∵A(2,4),AB⊥x轴于点B,
∴OB=2,AB=4,
∵△ABO绕点A逆时针旋转90°得到△ADC,
∴DC=OB=2,AD=AB=4
∴C(6,2)
设直线AC的解析式为y=ax+b,
把(2,4)(6,2)代入解析式可得:$\left\{\begin{array}{l}{2a+b=4}\\{6a+b=2}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=-0.5}\\{b=5}\end{array}\right.$,
所以解析式为:y=-0.5x+5

点评 本题考查的是一次函数图象上点的坐标特点及图形旋转的性质,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网