题目内容
7.平面直角坐标系中某点M(a,a+1)在x轴上,则a=-1.分析 由x轴上点的坐标特征得出a+1=0,即可得出结果.
解答 解:∵点M(a,a+1)在x轴上,
∴a+1=0,
解得:a=-1,
故答案为:-1.
点评 本题考查了x轴上点的坐标特征;熟记x轴上点的纵坐标=0是解决问题的关键.
练习册系列答案
相关题目
18.
如图,在平面直角坐标系中,直线y=-$\frac{3}{2}$x+3与矩形OABC的边AB、BC分别交于点E、F,若点B的坐标为(m,2),则m的值可能为( )
| A. | $\frac{1}{2}$ | B. | $\frac{3}{2}$ | C. | $\frac{5}{2}$ | D. | $\frac{7}{2}$ |
15.如图,已知数轴上三点M,O,N对应的数分别为-5、0、4,点P为数轴上任意一点.

(1)如果点P为线段MN的中点,那么点P表示的数为-$\frac{1}{2}$;
(2)设点P在数轴上对应的数为x.
①当P在数轴上运动到不同位置时,请你用含有x的代数式分别表示出点P到点M、点P到点N的距离,填在下面表格相应的位置上:
②是否存在x的值,使点P到点M、点N的距离之和等于13?若存在,请求出相应的x 的
值;若不存在,请说明理由.
(3)如果点P以每分钟3个单位长度的速度从点O向左运动时,点M和点N分别以每分钟1个单位长度和每分钟4个单位长度的速度也向左运动,且三点同时出发,那么几分钟时点P到点M,点N的距离相等?
(1)如果点P为线段MN的中点,那么点P表示的数为-$\frac{1}{2}$;
(2)设点P在数轴上对应的数为x.
①当P在数轴上运动到不同位置时,请你用含有x的代数式分别表示出点P到点M、点P到点N的距离,填在下面表格相应的位置上:
| 点P到点M的距离 | 点P到点N的距离 | |
| 点P在M、N之间 | x-(-5) | -x+4 |
| 点P在点M左侧 | -5-x | 4-x |
| 点P在点N右侧 | x-(-5) | x-4 |
值;若不存在,请说明理由.
(3)如果点P以每分钟3个单位长度的速度从点O向左运动时,点M和点N分别以每分钟1个单位长度和每分钟4个单位长度的速度也向左运动,且三点同时出发,那么几分钟时点P到点M,点N的距离相等?