题目内容

15.已知:如图,在平行四边形ABCD中,O为对角线BD的中点,过点O的作直线EF⊥BD分别交AD,BC于E,F两点,连结BE,DF.求证:四边形BFDE为菱形.

分析 根据平行四边形的性质以及全等三角形的判定方法证明出△DOE≌△BOF,得到OE=OF,利用对角线互相平分的四边形是平行四边形得出四边形EBFD是平行四边形,进而利用对角线互相垂直的平行四边形是菱形得出四边形BFDE为菱形.

解答 证明:∵在?ABCD中,O为对角线BD的中点,
∴BO=DO,∠EDB=∠FBO,
在△EOD和△FOB中,
$\left\{\begin{array}{l}{∠EDO=∠FBO}\\{OD=OB}\\{∠EOD=∠FOB}\end{array}\right.$,
∴△DOE≌△BOF(ASA);
∴OE=OF,
又∵OB=OD,
∴四边形EBFD是平行四边形,
∵EF⊥BD,
∴四边形BFDE为菱形.

点评 此题主要考查了菱形的判定,平行四边形的性质以及全等三角形的判定与性质等知识,得出OE=OF是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网