题目内容
12.(1)求证:DE=DC;
(2)求证:直线DC是⊙O的切线.
分析 (1)由平行四边形的性质得出AD∥BC,AB=DC,进而证得∠DAE=∠AEB,证出$\widehat{DE}$=$\widehat{AB}$,即可得出DE=DC;
(2)作直径DF,连接EF,则∠EFD=∠EAD,证出∠EFD=∠CDE,再由DF是⊙O的直径,得出∠DEF=90°,得出∠FDC=90°,即可得出结论.
解答 (1)证明:∵四边形ABCD是平行四边形,
∴AD∥BC,AB=DC,
∴∠DAE=∠AEB.
∴$\widehat{DE}$=$\widehat{AB}$,
∴AB=DE,
∴DE=DC;
(2)解:
如图所示:作直径DF,连接EF.
则∠EFD=∠EAD,
∵∠CDE=∠DAE,
∴∠EFD=∠CDE.
∵DF是⊙O的直径,
∴∠DEF=90°,
∴∠EFD+∠FDE=90°,
∴∠CDE+∠FDE=90°
∴∠FDC=90°.
∴直线DC是⊙O的切线.
点评 本题考查了切线的判定、平行四边形的性质、圆周角定理;熟练掌握切线的判定方法,并能进行有关推理计算是解决问题的关键.
练习册系列答案
相关题目
2.
如图,AB=AC,DB=DC,E、F在AD上,则图中全等三角形共有( )
| A. | 3对 | B. | 4对 | C. | 5对 | D. | 6对 |
17.平面内n(n≥2)条直线,每两条直线都相交,交点个数最多有( )
| A. | n | B. | n(n-1) | C. | $\frac{n(n+1)}{2}$ | D. | $\frac{n(n-1)}{2}$ |
1.我们定义一种新运算a&b(a,b是实数),规定:a&b=a2-ab-10b,等式右边是正常的实数运算,若x&2=4,则x的值为( )
| A. | 6或-4 | B. | -6或4 | C. | 1+$\sqrt{41}$或1-$\sqrt{41}$ | D. | 5或-4 |