题目内容
16.∵MG平分∠BMN已知,
∴∠GMN=$\frac{1}{2}$∠BMN角平分线的定义,
同理∠GNM=$\frac{1}{2}$∠DNM.
∵AB∥CD已知,
∴∠BMN+∠DNM=180°,
∴∠GMN+∠GNM=90°,
∵∠GMN+∠GNM+∠G=180°,
∴∠G=90°,
∴MG与NG的位置关系是垂直.
分析 由角平分线的定义和平行线的性质可求得∠GMN+∠GNM=90°,可证得MG⊥NG,据此填空即可.
解答 解:
∵MG平分∠BMN 已知,
∴∠GMN=$\frac{1}{2}$∠BMN 角平分线的定义,
同理∠GNM=$\frac{1}{2}$∠DNM.
∵AB∥CD 已知,
∴∠BMN+∠DNM=180°,
∴∠GMN+∠GNM=90°,
∵∠GMN+∠GNM+∠G=180°,
∴∠G=90°,
∴MG与NG的位置关系是 垂直.
故答案为:已知;角平分线的定义;已知;180°;90°;180°;90°;垂直.
点评 本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①同们角相等?两直线平行,②内错角相等?两直线平行,③同旁内角互补?两直线平行,④a∥b,b∥c⇒a∥c.
练习册系列答案
相关题目
6.已知m-2n=-1,则代数式1-2m+4n的值是( )
| A. | -3 | B. | -1 | C. | 2 | D. | 3 |