题目内容

8.如图,长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF,将∠BEF对折,点B落在直线EF上的B′处,得到折痕EC,将点A落在直线EF上的点A′处,得到折痕EN.
(1)若∠BEB′=110°,则∠BEC=55°,∠AEN=35°,∠BEC+∠AEN=90°.
(2)若∠BEB′=m°,则(1)中∠BEC+∠AEN的值是否改变?请说明你的理由.
(3)将∠ECF对折,点E刚好落在F处,且折痕与B′C重合,求∠DNA′.

分析 (1)根据折叠的性质可求出∠BEC和∠AEN的度数,然后求出两角之和;
(2)不变.根据折叠的性质可得∠BEC=∠B'EC,根据∠BEB′=m°,可得∠BEC=∠B'EC=$\frac{1}{2}$∠BEB′=$\frac{1}{2}$m°,然后求出∠AEN,最后求和进行判断;
(3)根据折叠的性质可得∠B'CF=∠B'CE,∠B'CE=∠BCE,进而得出∠B'CF=∠B'CE=∠BCE,求出其度数,在Rt△BCE中,可知∠BEC与∠BCE互余,然后求出∠BEC的度数,最后根据平角的性质和折叠的性质求解.

解答 解:(1)由折叠的性质可得,∠BEC=∠B'EC,∠AEN=∠A'EN,
∵∠BEB′=110°,
∴∠AEA'=180°-110°=70°,
∴∠BEC=∠B'EC=$\frac{1}{2}$∠BEB′=55°,∠AEN=∠A'EN=$\frac{1}{2}$∠AEA'=35°.
∴∠BEC+∠AEN=55°+35°=90°;
(2)不变.
由折叠的性质可得:∠BEC=∠B'EC,∠AEN=∠A'EN,
∵∠BEB′=m°,
∴∠AEA'=180°-m°,
可得∠BEC=∠B'EC=$\frac{1}{2}$∠BEB′=$\frac{1}{2}$m°,∠AEN=∠A'EN=$\frac{1}{2}$∠AEA'=$\frac{1}{2}$(180°-m°),
∴∠BEC+∠AEN=$\frac{1}{2}$m°+$\frac{1}{2}$(180°-m°)=90°,
故∠BEC+∠AEN的值不变;
(3)由折叠的性质可得:∠B'CF=∠B'CE,∠B'CE=∠BCE,
∴∠B'CF=∠B'CE=∠BCE=$\frac{1}{3}$×90°=30°,
在Rt△BCE中,
∵∠BEC与∠BCE互余,
∴∠BEC=90°-∠BCE=90°-30°=60°,
∴∠B'EC=∠BEC=60°,
∴∠AEA'=180°-∠BEC-∠B'EC=180°-60°-60°=60°,
∴∠AEN=$\frac{1}{2}$∠AEA'=30°,
∴∠ANE=90°-∠AEN=90°-30°=60°,
∴∠ANE=∠A'NE=60°,
∴∠DNA'=180°-∠ANE-∠A'NE=180°-60°-60°=60°.
故答案为:55,35,90.

点评 本题考查了翻折变换,涉及了折叠的性质、余角和补角的知识,根据条件求出各角的度数是解答本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网