ÌâÄ¿ÄÚÈÝ
14£®£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©µãPΪÏß¶ÎCDÉÏÒ»¶¯µã£¬ÒÔÿÃë2µ¥Î»µÄËÙ¶ÈÓɵãCÏòÖÕµãDÔ˶¯£¬Á¬½ÓOP£¬È¡OPµÄÖеãM£¬CD½»Å×ÎïÏßÓÚµãE£¬Á¬½ÓEM£¬ÉèµãPµÄÔ˶¯Ê±¼äΪt£¬¡÷PMEµÄÃæ»ýΪS£¬ÇóSÓëtµÄº¯Êý¹ØÏµÊ½£¬²¢Ö±½Óд³ö×Ô±äÁ¿µÄȡֵ·¶Î§£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬Á¬½ÓMD£¬Ö±Ïßy=mx-6¾¹ýµãB£¬µãNΪֱÏßy=mx-6ÉÏÒ»µã£¬µ±¡ÏDMN=90¡ã£¬BN=2$\sqrt{2}$ʱ£¬ÔÚxÖáÉÏ·½µÄÅ×ÎïÏßÉÏ´æÔÚµãQ£¬Ê¹¡÷AOQµÄÃæ»ýµÈÓÚ¡÷PMEµÄÃæ»ý£¬Çó´ËʱQµãµÄ×ø±ê£®
·ÖÎö £¨1£©ÏÈÇóµÃµãC£¨0£¬6£©£¬B£¨6£¬0£©£¬È»ºó½«µãB¡¢CµÄ×ø±ê´úÈëÅ×ÎïÏߵĽâÎöʽ¿ÉÇóµÃb¡¢cµÄÖµ£»
£¨2£©½«y=6´úÈëÅ×ÎïÏߵĽâÎöʽ¿ÉÇóµÃµãEµÄ×ø±ê£¬µ±0¡Üt¡Ü4ʱ£¬PE=4-t£¬µ±4£¼t¡Ü6ʱ£¬PE=6-t£¬ÓÉÖеã×ø±ê¹«Ê½¿ÉµÃµ½µãMµÄ×ø±ê£¬×îºóÒÀ¾ÝÈý½ÇÐεÄÃæ»ý¹«Ê½Çó½â¼´¿É£»
£¨3£©½«µãBµÄ×ø±ê´úÈëy=mx-6¿ÉÇóµÃmµÄÖµ£¬´Ó¶øµÃµ½Ö±ÏßBNµÄ½âÎöʽΪy=x-6£¬½ÓÏÂÀ´£¬ÓÉBN=2$\sqrt{2}$£¬¿ÉµÃµ½NµÄ×ø±êΪ£¨8£¬2£©»ò£¨4£¬-2£©£¬µ±NµÄ×ø±êΪ£¨8£¬2£©Ê±£¬¡ÏMDN£¼90¡ã£¬²»ºÍÌâÒ⣻µ±µãNµÄ×ø±êΪ£¨4£¬-2£©Ê±£¬ÒÀ¾Ý¹´¹É¶¨ÀíµÄÄæ¶¨ÀíÁгö¹ØÓÚtµÄ·½³Ì£¬´Ó¶ø¿ÉÇóµÃtµÄÖµ£¬È»ºó¿ÉµÃµ½¡÷PEMµÄÃæ»ý£¬È»ºóÒÀ¾ÝÈý½ÇÐεÄÃæ»ý¹«Ê½¿ÉÇóµÃQµÄ×Ý×ø±ê£¬×îºó£¬½«µãQµÄ×Ý×ø±ê´úÈëÅ×ÎïÏߵĽâÎöʽ¿ÉÇóµÃµãQµÄºá×ø±ê£®
½â´ð ½â£º£¨1£©¡ßËıßÐÎOCDBΪÕý·½ÐΣ¬µãDµÄ×ø±êΪ£¨6£¬6£©£¬
¡àC£¨0£¬6£©£¬B£¨6£¬0£©£®
½«µãB¡¢CµÄ×ø±ê´úÈëÅ×ÎïÏߵĽâÎöʽ¿ÉµÃµ½$\left\{\begin{array}{l}{-\frac{1}{2}¡Á36+6b+c=0}\\{c=6}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{b=2}\\{c=6}\end{array}\right.$£¬
¡àÅ×ÎïÏߵĽâÎöʽΪy=-$\frac{1}{2}$x2+2x+6£®
£¨2£©½«y=6´úÈëÅ×ÎïÏߵĽâÎöʽµÃ£º-$\frac{1}{2}$x2+2x+6=6£¬½âµÃx=0»òx=4£¬
¡àµãEµÄ×ø±êΪ£¨4£¬6£©£®
µ±0¡Üt¡Ü4ʱ£¬Èçͼ1Ëùʾ£ºÔòPE=4-t£®![]()
¡ßMΪOPµÄÖе㣬
¡àMµÄ×ø±êΪ£¨$\frac{1}{2}$t£¬3£©£®
¡à¡÷PEMµÄÃæ»ý=$\frac{1}{2}$¡Á3¡Á£¨4-t£©=-$\frac{3}{2}$t+6£®
µ±4£¼t¡Ü6ʱ£¬Èçͼ2Ëùʾ£ºPE=6-t£®![]()
¡à¡÷PEMµÄÃæ»ý=$\frac{1}{2}$¡Á3¡Á£¨t-4£©=$\frac{3}{2}$t-6£®
¡àSÓëtµÄº¯Êý¹ØÏµÊ½ÎªS=$\left\{\begin{array}{l}{-\frac{3}{2}t+6£¨0¡Üt¡Ü4£©}\\{\frac{3}{2}t-6£¨4£¼t¡Ü6£©}\end{array}\right.$£®
£¨3£©½«µãBµÄ×ø±ê´úÈëy=mx-6µÃ£º6m-6=0£¬½âµÃm=1£¬
¡àÖ±ÏßBNµÄ½âÎöʽΪy=x-6£®
ÓÖ¡ßBN=2$\sqrt{2}$£¬
¡àµãNµÄ×ø±êΪ£¨8£¬2£©»ò£¨4£¬-2£©£®
µ±µãNµÄ×ø±êΪ£¨8£¬2£©Ê±£¬¡ÏMDN£¼90¡ã£¬²»ºÍÌâÒ⣻
µ±µãNµÄ×ø±êΪ£¨4£¬-2£©Ê±£¬Èçͼ3Ëùʾ£º![]()
¡ßµãM£¨$\frac{1}{2}$t£¬3£©£¬D£¨6£¬6£©£¬N£¨4£¬-2£©£¬¡ÏDMN=90¡ã£¬
¡àMD2+MN2=DN2£¬¼´£¨6-$\frac{1}{2}$t£©2+£¨6-3£©2+£¨4-$\frac{1}{2}$t£©2+£¨-2-3£©2=22+82£¬
ÕûÀíµÃ£ºt2-20t+36=0£¬½âµÃ£ºt=2»òt=18£¨ÉáÈ¥£©£®
µ±t=2ʱ£¬S=-$\frac{3}{2}$t+6=3£¬¼´¡÷PEMµÄÃæ»ýΪ3£®
½«y=0´úÈëÅ×ÎïÏߵĽâÎöʽµÃ£º-$\frac{1}{2}$x2+2x+6=0£¬½âµÃ£ºx=-2»òx=6£¬
¡àµãAµÄ×ø±êΪ£¨-2£¬0£©£¬
¡àOA=2£®
¡à$\frac{1}{2}$¡ÁAO¡ÁQy=3£¬¼´$\frac{1}{2}$¡Á2¡ÁQy=3£¬½âµÃ£ºQy=3£®
½«y=3´úÈëÅ×ÎïÏߵĽâÎöʽµÃ£º-$\frac{1}{2}$x2+2x+6=3£¬ÕûÀíµÃ£ºx2-4x-6=0£¬
½âµÃ£ºx=$\sqrt{10}$+2»òx=-$\sqrt{10}$+2£®
¡àµãQµÄ×ø±êΪ£¨$\sqrt{10}$+2£¬3£©»ò£¨-$\sqrt{10}$+2£¬3£©£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éµÄÊǶþ´Îº¯ÊýµÄ×ÛºÏÓ¦Ó㬽â´ð±¾ÌâÖ÷ÒªÓ¦ÓÃÁË´ý¶¨ÏµÊý·¨Çó¶þ´Îº¯ÊýµÄ½âÎöʽ¡¢¹´¹É¶¨ÀíµÄÄæ¶¨Àí¡¢Á½µã¼äµÄ¾àÀ빫ʽ¡¢Èý½ÇÐεÄÃæ»ý¹«Ê½£¬ÇóµÃµãMµÄ×ø±êÊǽâÌâµÄ¹Ø¼ü£®
| A£® | 4$\sqrt{3}$ | B£® | 8$\sqrt{3}$ | C£® | 10$\sqrt{3}$ | D£® | 12$\sqrt{3}$ |
| A£® | B£® | C£® | D£® |
| A£® | 0.2 | B£® | -5 | C£® | -$\frac{1}{5}$ | D£® | 5 |
| A£® | a=-3 | B£® | a=1 | C£® | a=3 | D£® | a=-1 |