题目内容

9.如图,在梯形ABCD中,AD∥BC,AC与BD交于O点,DO:BO=1:2,点E在CB的延长线上,如果S△AOD:S△ABE=1:3,那么BC:BE=2:1.

分析 由平行线证出△AOD∽△COB,得出S△AOD:S△COB=1:4,S△AOD:S△AOB=1:2,由S△AOD:S△ABE=1:3,得出S△ABC:S△ABE=2:1,即可得出答案.

解答 解:∵AD∥BC,
∴△AOD∽△COB,
∵DO:BO=1:2,
∴S△AOD:S△COB=1:4,S△AOD:S△AOB=1:2,
∵S△AOD:S△ABE=1:3,
∴S△ABC:S△ABE=6:3=2:1,
∴BC:BE=2:1.

点评 本题考查了相似三角形的判定与性质、梯形的性质以及三角形的面积关系;熟练掌握相似三角形的判定与性质是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网