题目内容

1.如图,在等边三角形ABC中,AB=6,D是BC上一点,且BC=3BD,△ABD绕点A旋转后得到△ACE,则CE的长度为(  )
A.2B.3C.4D.6

分析 由等边三角形的性质得出BC=AB=6,求出BD,由旋转的性质得出△ACE≌△ABD,得出CE=BD,即可得出结果.

解答 解:∵△ABC是等边三角形,
∴BC=AB=6,
∵BC=3BD,
∴BD=$\frac{1}{3}$BC=2,
由旋转的性质得:△ACE≌△ABD,
∴CE=BD=2.
故选:A.

点评 本题考查了旋转的性质、等边三角形的性质、全等三角形的性质;熟练掌握旋转的性质和等边三角形的性质是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网