题目内容
3.解方程组:$\left\{\begin{array}{l}{\frac{x+y}{2}=\frac{y+z}{3}=\frac{z+x}{4}①}\\{x+y+z=27②}\end{array}\right.$.分析 先设方程①为k,然后得到:x+y=2k,y+z=3k,z+x=4k,然后三个式子相加,再代入②,求出k的值,从而得到关于x、y、z的方程组,进而利用消元的思想解答即可.
解答 解:$\left\{\begin{array}{l}{\frac{x+y}{2}=\frac{y+z}{3}=\frac{z+x}{4}①}\\{x+y+z=27②}\end{array}\right.$,
设$\frac{x+y}{2}=\frac{y+z}{3}=\frac{z+x}{4}$=k,
则x+y=2k③,y+z=3k④,z+x=4k⑤,
③+④+⑤得:x+y+z=$\frac{9}{2}$k⑥,
将⑥代入②得:$\frac{9}{2}k$=27,
解得:k=6,
∴$\left\{\begin{array}{l}{x+y=12}\\{y+z=18}\\{z+x=24}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{x=9}\\{y=3}\\{z=15}\end{array}\right.$.
∴原方程组的解为:$\left\{\begin{array}{l}{x=9}\\{y=3}\\{z=15}\end{array}\right.$.
点评 此题考查了三元一次方程组的解法,解题的关键是:将原方程组转化为:$\left\{\begin{array}{l}{x+y=12}\\{y+z=18}\\{z+x=24}\end{array}\right.$.
练习册系列答案
相关题目
14.如果$\frac{1}{{s}_{1}}=\frac{1}{{t}_{1}}+\frac{1}{{t}_{2}}$,$\frac{1}{{s}_{2}}=\frac{1}{{t}_{1}}-\frac{1}{{t}_{2}}$,则$\frac{{s}_{1}}{{s}_{2}}$=( )
| A. | $\frac{{t}_{1}+{t}_{2}}{{t}_{2}-{t}_{1}}$ | B. | $\frac{{t}_{2}-{t}_{1}}{{t}_{2}+{t}_{1}}$ | C. | $\frac{{t}_{1}-{t}_{2}}{{t}_{2}+{t}_{1}}$ | D. | $\frac{{t}_{1}+{t}_{2}}{{t}_{1}-{t}_{2}}$ |
15.下列运算正确的是( )
| A. | $\sqrt{25}$=±5 | B. | |-3|=3 | C. | $\root{3}{9}$=3 | D. | $\sqrt{{(-4)}^{2}}$=-4 |