题目内容
11.分析 若△CEF与△ABC相似,分两种情况:①若CE:CF=3:4,如图1所示,此时EF∥AB,CD为AB边上的高;②若CF:CE=3:4,如图2所示.由相似三角形角之间的关系,可以推出∠A=∠ECD与∠B=∠FCD,从而得到CD=AD=BD,即D点为AB的中点.
解答
解:若△CEF与△ABC相似,分两种情况:
①若CE:CF=3:4,如图1所示.
∵CE:CF=AC:BC,
∴EF∥AB.
由折叠性质可知,CD⊥EF,
∴CD⊥AB,即此时CD为AB边上的高.
在Rt△ABC中,∵∠ACB=90°,AC=6,BC=8,
∴AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=10,
∴cosA=$\frac{AC}{AB}$=$\frac{6}{10}$=$\frac{3}{5}$,
∴AD=AC•cosA=6×$\frac{3}{5}$=$\frac{18}{5}$;
②若CF:CE=3:4,如图2所示.
∵△CEF∽△CBA,
∴∠CEF=∠B.
由折叠性质可知,∠CEF+∠ECD=90°,
又∵∠A+∠B=90°,
∴∠A=∠ECD,
∴AD=CD.
同理可得:∠B=∠FCD,CD=BD,
∴D点为AB的中点,
∴AD=$\frac{1}{2}$AB=$\frac{1}{2}$×10=5.
故答案为:$\frac{18}{5}$或5.
点评 本题主要考查的是相似三角形的性质,折叠的性质,勾股定理和,难度适中,运用分类讨论及数形结合思想是解题的关键.
练习册系列答案
相关题目
16.已知某种儿童米粉的标准质量为200g,苏果超市从购进的儿童米粉中随机抽取8袋检测每袋的质量是否符合标准质量,超过与不足的质量分别用正、负数表示,例如+2表示该袋米粉超过标准质量2g,现记录如表:
(1)指出编号为几的米粉最接近标准质量?
(2)在抽取的八袋米粉中最重的那袋比最轻的那袋多多少克?
(3)这次抽样的八袋米粉的总质量是多少?
| 编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 偏差 | +1 | -2 | -1 | -2 | -0.5 | +4 | +2 | -1 |
(2)在抽取的八袋米粉中最重的那袋比最轻的那袋多多少克?
(3)这次抽样的八袋米粉的总质量是多少?