题目内容

问题探究
(1)如图①,在矩形ABCD中,AB=3,BC=4,如果BC边上存在点P,使△APD为等腰三角形,那么请画出满足条件的一个等腰三角形△APD,并求出此时BP的长;
(2)如图②,在△ABC中,∠ABC=60°,BC=12,AD是BC边上的高,E、F分别为边AB、AC的中点,当AD=6时,BC边上存在一点Q,使∠EQF=90°,求此时BQ的长;
问题解决
(3)有一山庄,它的平面图为如图③的五边形ABCDE,山庄保卫人员想在线段CD上选一点M安装监控装置,用来监视边AB,现只要使∠AMB大约为60°,就可以让监控装置的效果达到最佳,已知∠A=∠E=∠D=90°,AB=270m,AE=400m,ED=285m,CD=340m,问在线段CD上是否存在点M,使∠AMB=60°?若存在,请求出符合条件的DM的长,若不存在,请说明理由.
考点:圆的综合题,全等三角形的判定与性质,等边三角形的性质,勾股定理,三角形中位线定理,矩形的性质,正方形的判定与性质,直线与圆的位置关系,特殊角的三角函数值
专题:压轴题,存在型
分析:(1)由于△PAD是等腰三角形,底边不定,需三种情况讨论,运用三角形全等、矩形的性质、勾股定理等知识即可解决问题.
(2)以EF为直径作⊙O,易证⊙O与BC相切,从而得到符合条件的点Q唯一,然后通过添加辅助线,借助于正方形、特殊角的三角函数值等知识即可求出BQ长.
(3)要满足∠AMB=60°,可构造以AB为边的等边三角形的外接圆,该圆与线段CD的交点就是满足条件的点,然后借助于等边三角形的性质、特殊角的三角函数值等知识,就可算出符合条件的DM长.
解答:解:(1)①作AD的垂直平分线交BC于点P,如图①,
则PA=PD.
∴△PAD是等腰三角形.
∵四边形ABCD是矩形,
∴AB=DC,∠B=∠C=90°.
∵PA=PD,AB=DC,
∴Rt△ABP≌Rt△DCP(HL).
∴BP=CP.
∵BC=4,
∴BP=CP=2.
②以点D为圆心,AD为半径画弧,交BC于点P′,如图①,
则DA=DP′.
∴△P′AD是等腰三角形.
∵四边形ABCD是矩形,
∴AD=BC,AB=DC,∠C=90°.
∵AB=3,BC=4,
∴DC=3,DP′=4.
∴CP′=
42-32
=
7

∴BP′=4-
7

③点A为圆心,AD为半径画弧,交BC于点P″,如图①,
则AD=AP″.
∴△P″AD是等腰三角形.
同理可得:BP″=
7

综上所述:在等腰三角形△ADP中,
若PA=PD,则BP=2;
若DP=DA,则BP=4-
7

若AP=AD,则BP=
7


(2)∵E、F分别为边AB、AC的中点,
∴EF∥BC,EF=
1
2
BC.
∵BC=12,
∴EF=6.
以EF为直径作⊙O,过点O作OQ⊥BC,垂足为Q,连接EQ、FQ,如图②.
∵AD⊥BC,AD=6,
∴EF与BC之间的距离为3.
∴OQ=3
∴OQ=OE=3.
∴⊙O与BC相切,切点为Q.
∵EF为⊙O的直径,
∴∠EQF=90°.
过点E作EG⊥BC,垂足为G,如图②.
∵EG⊥BC,OQ⊥BC,
∴EG∥OQ.
∵EO∥GQ,EG∥OQ,∠EGQ=90°,OE=OQ,
∴四边形OEGQ是正方形.
∴GQ=EO=3,EG=OQ=3.
∵∠B=60°,∠EGB=90°,EG=3,
∴BG=
3

∴BQ=GQ+BG=3+
3

∴当∠EQF=90°时,BQ的长为3+
3


(3)在线段CD上存在点M,使∠AMB=60°.
理由如下:
以AB为边,在AB的右侧作等边三角形ABG,
作GP⊥AB,垂足为P,作AK⊥BG,垂足为K.
设GP与AK交于点O,以点O为圆心,OA为半径作⊙O,
过点O作OH⊥CD,垂足为H,如图③.
则⊙O是△ABG的外接圆,
∵△ABG是等边三角形,GP⊥AB,
∴AP=PB=
1
2
AB.
∵AB=270,
∴AP=135.
∵ED=285,
∴OH=285-135=150.
∵△ABG是等边三角形,AK⊥BG,
∴∠BAK=∠GAK=30°.
∴OP=AP•tan30°
=135×
3
3

=45
3

∴OA=2OP=90
3

∴OH<OA.
∴⊙O与CD相交,设交点为M,连接MA、MB,如图③.
∴∠AMB=∠AGB=60°,OM=OA=90
3
..
∵OH⊥CD,OH=150,OM=90
3

∴HM=
OM2-OH2

=
(90
3
)2-1502

=30
2

∵AE=400,OP=45
3

∴DH=400-45
3

若点M在点H的左边,则DM=DH+HM=400-45
3
+30
2

∵400-45
3
+30
2
>340,
∴DM>CD.
∴点M不在线段CD上,应舍去.
若点M在点H的右边,则DM=DH-HM=400-45
3
-30
2

∵400-45
3
-30
2
<340,
∴DM<CD.
∴点M在线段CD上.
综上所述:在线段CD上存在唯一的点M,使∠AMB=60°,
此时DM的长为(400-45
3
-30
2
)米.
点评:本题考查了垂直平分线的性质、矩形的性质、等边三角形的性质、正方形的判定与性质、直线与圆的位置关系、圆周角定理、三角形的中位线定理、全等三角形的判定与性质、勾股定理、特殊角的三角函数值等知识,考查了操作、探究等能力,综合性非常强.而构造等边三角形及其外接圆是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网