题目内容

2.二次函数y=$\frac{2}{3}{x^2}$的图象如图所示,点A0位于坐标原点,点A1,A2,A3,…,A100在y
轴的正半轴上,点,B2,B3,…,B100在二次函数y=$\frac{2}{3}{x^2}$位于第一象限的图象上,若△A0B1A1,△A1B2A2,△A2B3A3,…,△A99B100A100都为等边三角形,则B100的坐标为$({50\sqrt{3},5000})$.

分析 分别过B1,B2,B3作y轴的垂线,垂足分别为A、B、C,设A0A1=a,A1A2=b,A2A3=c,则AB1=$\frac{\sqrt{3}}{2}$a,BB2=$\frac{\sqrt{3}}{2}$b,CB3=$\frac{\sqrt{3}}{2}$c,再根据所求正三角形的边长,分别表示B1,B2,B3的纵坐标,逐步代入抛物线y=$\frac{2}{3}$x2中,求a、b、c的值,得出规律.

解答 解:分别过B1,B2,B3作y轴的垂线,垂足分别为A、B、C,
设A0A1=a,A1A2=b,A2A3=c,则AB1=$\frac{\sqrt{3}}{2}$a,BB2=$\frac{\sqrt{3}}{2}$b,CB3=$\frac{\sqrt{3}}{2}$c,
在正△A0B1A1中,B1($\frac{\sqrt{3}}{2}$a,$\frac{a}{2}$),
代入y=$\frac{2}{3}$x2中,得$\frac{a}{2}$=$\frac{2}{3}$•($\frac{\sqrt{3}}{2}$a)2,解得a=1,
∴B1($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$),
在正△A1B2A2中,B2($\frac{\sqrt{3}}{2}$b,1+$\frac{b}{2}$),
代入y=$\frac{2}{3}$x2中,得1+$\frac{b}{2}$=$\frac{2}{3}$•($\frac{\sqrt{3}}{2}$b)2,解得b=2,
∴B2($\sqrt{3}$,2),
在正△A2B3A3中,B3($\frac{\sqrt{3}}{2}$c,3+$\frac{c}{2}$),
代入y=$\frac{2}{3}$x2中,得3+$\frac{c}{2}$=$\frac{2}{3}$•($\frac{\sqrt{3}}{2}$c)2,解得c=3,
∴B3($\frac{3\sqrt{3}}{2}$,$\frac{9}{2}$),
…,
由此可得B100的坐标为$({50\sqrt{3},5000})$.
故答案为$({50\sqrt{3},5000})$.

点评 本题考查了二次函数的综合运用.关键是根据正三角形的性质表示点的坐标,利用抛物线解析式求正三角形的边长,得到规律.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网