题目内容

8.如图,?ABCD的顶点A、C、D都在⊙O上,AB与⊙O相切于点A,BC与⊙O交于点E,设∠OCD=α,∠BAD=β.
(1)求证:AB=AE;
(2)试探究α与β之间的数量关系.

分析 (1)先证明∠CED=∠ADE,推出$\widehat{AE}$=$\widehat{CD}$,推出AE=CD,由此即可证明.
(2)延长AO交CD于F,由β=90°+∠OAD,∠OAD=$\frac{1}{2}$∠FOD,∠FOD=∠FOC=90°-α,由此即可解决问题.

解答 (1)证明:连接DE.
∵四边形ABCD是平行四边形,
∴BC∥AD,AB=CD,
∴∠CED=∠ADE,
∴$\widehat{AE}$=$\widehat{CD}$,
∴AE=CD,
∴AB=AE.
(2)延长AO交CD于F,
∵AB是⊙O切线,
∴AB⊥AF,
∵AB∥CD,
∴AF⊥CD,
∵OC=OD,
∴∠OCD=∠ODC,
∴∠COF=∠DOF=90°-α,
∵∠OAD=∠ODA,
∴$∠OAD=\frac{1}{2}$((90°-α),
∴β=90°+$\frac{1}{2}$(90°-α)=135°-$\frac{1}{2}$α.

点评 本题考查切线的性质、平行四边形的性质、圆的有关知识、垂径定理等知识,解题的关键是灵活运用这些知识解决问题,属于中考常考题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网