题目内容

我们知道,无限循环小数都可以转化为分数.例如:将0. 转化为分数时,可设0. = ,则,解得 ,即0. =.仿此方法,将0. 化成分数是_______.

【解析】利用已知设0.=x,则x=0.45+x,解方程即可求出答案. 【解析】 设0. =x,则x=0.45+x, 解方程得. 故答案为: . “点睛”此题主要考查了一元一次方程的应用,关键是正确理解题意,看懂例题的解题方法,根据题意将0. 化成分数是解题关键.
练习册系列答案
相关题目

如图有一圆锥形粮堆,其主视图是边长为6m的正三形ABC。

(1)求该圆锥形粮堆的侧面积。

(2)母线AC的中点P处有一老鼠正在偷吃粮食,小猫从B处沿圆锥表面去偷袭老鼠,求小猫经过的最短路程。 (结果不取近似数) 

【答案】(1) 18m2;(2)3m.

【解析】试题分析:(1)根据圆锥的侧面展开图是扇形,圆锥的侧面积公式是π×底面圆半径×圆锥的母线长;扇形的面积公式是,进行计算即可;
(2)根据两点之间,线段最短.首先要展开圆锥的半个侧面,再连接BP.发现BP是直角边是3和6的直角三角形的斜边.根据勾股定理即可计算.

试题解析:(1)根据圆锥的侧面积等于展开扇形的面积得:
πrl=π×3×6=18π.
(2)圆锥的底面周长是6π,则6π=
∴n=180°,即圆锥侧面展开图的圆心角是180度.
则在圆锥侧面展开图中AP=3,AB=6,∠BAP=90度.
∴在圆锥侧面展开图中BP=m.
故小猫经过的最短距离是m.

【题型】解答题
【结束】
9

(1)如图1,在一块宽为12m,长为20m的矩形地面上修筑同样宽的道路,余下的部分种上草坪.要使草坪的面积为180m2,求道路的宽;

(2)现在对该矩形区域进行改造,如图2,在正中央建一个与矩形的边互相平行的正方形观赏亭,观赏亭的四边连接四条与矩形的边互相平行的且宽度相等的道路,已知道路的宽为正方形边长的.若道路与观赏亭的面积之和是矩形面积的,求道路的宽.

(1)道路宽为2米;(2)道路的宽为1米. 【解析】试题分析:(1)设道路宽为x米,利用平移把不规则的图形变为规则图形,如此一来,所有草坪面积之和就变为了(20﹣x)(12﹣x)米2,进而即可列出方程,求出答案; (2)设道路的宽为x米,则正方形边长为4x,根据道路与观赏亭的面积之和是矩形面积的,列方程求解即可. 试题解析:【解析】 (1)设道路宽为x米, 根据题意得:(...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网