题目内容
我们知道,无限循环小数都可以转化为分数.例如:将0. 转化为分数时,可设0. = ,则,解得 ,即0. =.仿此方法,将0. 化成分数是_______.
解下列方程
(1)3(x﹣2)=x﹣4; (2).
如图是由我市某中学楼层间的两个台阶组成的几何体,已知两个台阶的高度和宽度是相同的,据此可判断此几何体的三视图是( ).
A.
B.
C.
D.
如图有一圆锥形粮堆,其主视图是边长为6m的正三形ABC。
(1)求该圆锥形粮堆的侧面积。
(2)母线AC的中点P处有一老鼠正在偷吃粮食,小猫从B处沿圆锥表面去偷袭老鼠,求小猫经过的最短路程。 (结果不取近似数)
【答案】(1) 18m2;(2)3m.
【解析】试题分析:(1)根据圆锥的侧面展开图是扇形,圆锥的侧面积公式是π×底面圆半径×圆锥的母线长;扇形的面积公式是,进行计算即可;(2)根据两点之间,线段最短.首先要展开圆锥的半个侧面,再连接BP.发现BP是直角边是3和6的直角三角形的斜边.根据勾股定理即可计算.
试题解析:(1)根据圆锥的侧面积等于展开扇形的面积得:πrl=π×3×6=18π.(2)圆锥的底面周长是6π,则6π=,∴n=180°,即圆锥侧面展开图的圆心角是180度.则在圆锥侧面展开图中AP=3,AB=6,∠BAP=90度.∴在圆锥侧面展开图中BP=m.故小猫经过的最短距离是m.
【题型】解答题【结束】9
(1)如图1,在一块宽为12m,长为20m的矩形地面上修筑同样宽的道路,余下的部分种上草坪.要使草坪的面积为180m2,求道路的宽;
(2)现在对该矩形区域进行改造,如图2,在正中央建一个与矩形的边互相平行的正方形观赏亭,观赏亭的四边连接四条与矩形的边互相平行的且宽度相等的道路,已知道路的宽为正方形边长的.若道路与观赏亭的面积之和是矩形面积的,求道路的宽.
小明想知道湖中两个小亭A、B之间的距离,他在与小亭A、B位于同一水平面且东西走向的湖边小道上某一观测点M处,测得亭A在点M的北偏东30°方向, 亭B在点M的北偏东60°方向,当小明由点M沿小道向东走60米时,到达点N处,此时测得亭A恰好位于点N的正北方向,继续向东走30米时到达点Q处,此时亭B恰好位于点Q的正北方向,根据以上测量数据,请你帮助小明计算湖中两个小亭A、B之间的距离.
小明做作业时,不小心将方程●中的一个常数污染了看不清楚,小芳告诉他该方程的解是负数,并且这个常数是负整数,该方程的解是_______.
观察下列等式:71=7,72=49,73=343,74=2 401,75=16 807,76=117 649,…,那么:71+72+73+…+72 016的末位数字是( )
A. 9 B. 7 C. 6 D. 0
已知:如图,在△ABC中,D为BC上的一点,AD平分∠EDC,且∠E=∠B,ED=DC.
(1)求证:△ADE≌△ADC;
(2) AB与AC相等吗?若相等,请说明理由.
已知是二元一次方程组的解,则2m- n的算术平方根为 ( )
A. 4 B. 2 C. D. ±2