题目内容

小明想知道湖中两个小亭A、B之间的距离,他在与小亭A、B位于同一水平面且东西走向的湖边小道上某一观测点M处,测得亭A在点M的北偏东30°方向, 亭B在点M的北偏东60°方向,当小明由点M沿小道向东走60米时,到达点N处,此时测得亭A恰好位于点N的正北方向,继续向东走30米时到达点Q处,此时亭B恰好位于点Q的正北方向,根据以上测量数据,请你帮助小明计算湖中两个小亭A、B之间的距离.

湖中两个小亭A、B之间的距离为60米。 【解析】分析:AN、BQ,过B作BE⊥AN于点E.在Rt△AMN和在Rt△BMQ中,根据三角函数就可以求得AN,BQ,求得NQ,AE的长,在直角△ABE中,依据勾股定理即可求得AB的长. 本题解析: 连结AN、BQ ∵点A在点N的正北方向,点B在点Q的正北方向 ∴ 在Rt△AMN中:tan∠AMN= ∴AN= ...
练习册系列答案
相关题目

如图,在平面直角坐标系中,已知四边形ABCD为菱形,且(0,3)、(﹣4,0).

(1)求经过点的反比例函数的解析式;

(2)设是(1)中所求函数图象上一点,以顶点的三角形的面积与△COD的面积相等.求点P的坐标.

【答案】(1);(2)P()或(-,-).

【解析】试题分析:综合考查反比例函数及菱形的性质,注意:根据菱形的性质得到点C的坐标;点P的横坐标的有两种情况.

(1)根据菱形的性质可得菱形的边长,进而可得点C的坐标,代入反比例函数解析式可得所求的解析式; (2)设出点P的坐标,易得△COD的面积,利用点P的横坐标表示出△PAO的面积,那么可得点P的横坐标,就求得了点P的坐标.

试题解析:(1)由题意知,OA=3,OB=4,

在Rt△AOB中,AB==5,

∵四边形ABCD为菱形,

∴AD=BC=AB=5,

∴C(-4,-5).

设经过点C的反比例函数的解析式为y=(k≠0),

=-5,解得k=20.

故所求的反比例函数的解析式为y=

(2)设P(x,y),

∵AD=AB=5,OA=3,

∴OD=2,S△COD=×2×4=4,

•OA•|x|=4,

∴|x|=

∴x=±,、

当x=时,y==,当x=-时,y==-

∴P()或(?,?).

考点:反比例函数综合题.

【题型】解答题
【结束】
14

如图,在中, ,点两边的距离相等,且

(1)先用尺规作出符合要求的点(保留作图痕迹,不需要写作法),然后判断△ABP的形状,并说明理由;

(2)设,试用的代数式表示的周长和面积;

(3)设交于点,试探索当边的长度变化时,的值是否发生变化,若不变,试求出这个不变的值,若变化,试说明理由.

(1)作图见解析;ΔABP是等腰直角三角形. 理由见解析;(2); (3). 【解析】(1)依题意,点P既在的平分线上, 又在线段AB的垂直平分线上. 如图1,作的平分线, 作线段的垂直平分线, 与的 交点即为所求的P点。┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3分 是等腰直角三角形. 理由:过点P分别作、,垂足为E、F如图2. ∵平分,、,垂足为E、F, ...

如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),求这个立体图形的表面积.

【答案】200mm2.

【解析】试题分析:根据三视图可知立体图形下面的长方体的长、宽、高分别为8mm,6mm,2mm,上面的长方体的长、宽、高分别为4mm,2mm,4mm.由此计算这个立体图形的表面积即可.

试题解析:

根据三视图可知立体图形下面的长方体的长、宽、高分别为8mm,6mm,2mm,上面的长方体的长、宽、高分别为4mm,2mm,4mm.

则这个立体图形的表面积为:2(8×6+6×2+8×2)+2(4×2+2×4+4×4)-2×4×2=200(mm2).

答:这个立体图形的表面积为200mm2.

【题型】解答题
【结束】
7

如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB长为4米.

(1)求新传送带AC的长度;

(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物是否需要挪走,并说明理由.

(1)5.6m;(2)应挪走. 【解析】试题解析:试题分析:(1)在构建的直角三角形中,首先求出两个直角三角形的公共直角边,进而在Rt△ACD中,求出AC的长. (2)通过解直角三角形,可求出BD、CD的长,进而可求出BC、PC的长.然后判断PC的值是否大于2米即可. 试题解析:(1)如图, 在Rt△ABD中,AD=ABsin45°=4. 在Rt△ACD中, ∵∠ACD=30...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网