题目内容
如图是由我市某中学楼层间的两个台阶组成的几何体,已知两个台阶的高度和宽度是相同的,据此可判断此几何体的三视图是( ).
A.
B.
C.
D.
如图,O为坐标原点,点A(1,5)和点B(m,1)均在反比例函数y=图象上.
(1)求m,k的值;
(2)设直线AB与x轴交于点C,求△AOC的面积.
多项式ab﹣2ab2﹣a的次数为________
(2010•沈阳)如图,在?ABCD中,点E在边BC上,BE:EC=1:2,连接AE交BD于点F,则△BFE的面积与△DFA的面积之比为 .
已知反比例函数,下列结论中不正确的是( )
A. 图象经过点(-1,-1) B. 图象在第一、三象限
C. 当时, D. 当时,y随着x的增大而增大
﹣5的倒数的相反数是( )
A. 5 B. C. ﹣5 D. ﹣
如图,在平面直角坐标系中,已知四边形ABCD为菱形,且(0,3)、(﹣4,0).
(1)求经过点的反比例函数的解析式;
(2)设是(1)中所求函数图象上一点,以顶点的三角形的面积与△COD的面积相等.求点P的坐标.
【答案】(1);(2)P(, )或(-,-).
【解析】试题分析:综合考查反比例函数及菱形的性质,注意:根据菱形的性质得到点C的坐标;点P的横坐标的有两种情况.
(1)根据菱形的性质可得菱形的边长,进而可得点C的坐标,代入反比例函数解析式可得所求的解析式; (2)设出点P的坐标,易得△COD的面积,利用点P的横坐标表示出△PAO的面积,那么可得点P的横坐标,就求得了点P的坐标.
试题解析:(1)由题意知,OA=3,OB=4,
在Rt△AOB中,AB==5,
∵四边形ABCD为菱形,
∴AD=BC=AB=5,
∴C(-4,-5).
设经过点C的反比例函数的解析式为y=(k≠0),
则=-5,解得k=20.
故所求的反比例函数的解析式为y=.
(2)设P(x,y),
∵AD=AB=5,OA=3,
∴OD=2,S△COD=×2×4=4,
即•OA•|x|=4,
∴|x|=,
∴x=±,、
当x=时,y==,当x=-时,y==-,
∴P(, )或(?,?).
考点:反比例函数综合题.
【题型】解答题【结束】14
如图,在中, ,点到两边的距离相等,且.
(1)先用尺规作出符合要求的点(保留作图痕迹,不需要写作法),然后判断△ABP的形状,并说明理由;
(2)设,,试用、的代数式表示的周长和面积;
(3)设与交于点,试探索当边、的长度变化时,的值是否发生变化,若不变,试求出这个不变的值,若变化,试说明理由.
我们知道,无限循环小数都可以转化为分数.例如:将0. 转化为分数时,可设0. = ,则,解得 ,即0. =.仿此方法,将0. 化成分数是_______.
方程的解为_______________.