题目内容
(1)求证:BD=CD;
(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论;
(3)当△ABC满足什么条件时,四边形AFBD为正方形?(写出条件即可,不要求证明)
考点:正方形的判定,全等三角形的判定与性质,矩形的判定
专题:
分析:(1)证明△AEF≌△DEC可得AF=DC,再根据条件AF=BD可利用等量代换可得BD=CD;
(2)首先判定四边形AFBD为平行四边形,再根据等腰三角形三线合一的性质可得AD⊥BC,进而可得四边形AFBD为矩形;
(3)当AB=AC,且∠BAC=90°时,四边形AFBD为正方形,首先证明∠ABC=45°,∠BAD=45°,可得AD=BD,进而可得四边形AFBD为正方形.
(2)首先判定四边形AFBD为平行四边形,再根据等腰三角形三线合一的性质可得AD⊥BC,进而可得四边形AFBD为矩形;
(3)当AB=AC,且∠BAC=90°时,四边形AFBD为正方形,首先证明∠ABC=45°,∠BAD=45°,可得AD=BD,进而可得四边形AFBD为正方形.
解答:
(1)证明:∵AF∥BC,
∴∠AFE=∠ECD.
∵E是AD的中点,
∴DE=AE,
在△AEF与△DEC中,
,
∴△AEF≌△DEC(AAS),
∴AF=DC,
∵AF=BD,
∴BD=CD;
(2)答:四边形AFBD为矩形;
解:∵AF=BD,AF∥BD,
∴四边形AFBD为平行四边形,
∵AB=AC,BD=DC,
∴AD⊥BC,
∴∠BDA=90°,
∴四边形AFBD为矩形;
(3)AB=AC,且∠BAC=90°;
∵AB=AC,且∠BAC=90°,
∴∠ABC=45°,
∵AD⊥BC,
∴∠BAD=45°,
∴AD=DB,
∴四边形AFBD为正方形.
∴∠AFE=∠ECD.
∵E是AD的中点,
∴DE=AE,
在△AEF与△DEC中,
|
∴△AEF≌△DEC(AAS),
∴AF=DC,
∵AF=BD,
∴BD=CD;
(2)答:四边形AFBD为矩形;
解:∵AF=BD,AF∥BD,
∴四边形AFBD为平行四边形,
∵AB=AC,BD=DC,
∴AD⊥BC,
∴∠BDA=90°,
∴四边形AFBD为矩形;
(3)AB=AC,且∠BAC=90°;
∵AB=AC,且∠BAC=90°,
∴∠ABC=45°,
∵AD⊥BC,
∴∠BAD=45°,
∴AD=DB,
∴四边形AFBD为正方形.
点评:此题主要考查了正方形的判定,矩形的判定,以及全等三角形的判定与性质,关键是掌握邻边相等的矩形是正方形.
练习册系列答案
相关题目
下列命题中,正确的是( )
①顶点在圆周上的角是圆周角;②圆周角的度数等于圆心角度数的一半;③90°的圆周角所对的弦是直径;④不在同一条直线上的三个点确定一个圆;⑤同弧所对的圆周角相等.
①顶点在圆周上的角是圆周角;②圆周角的度数等于圆心角度数的一半;③90°的圆周角所对的弦是直径;④不在同一条直线上的三个点确定一个圆;⑤同弧所对的圆周角相等.
| A、①②③ | B、③④⑤ |
| C、①②⑤ | D、②④⑤ |
| A、 |
| B、 |
| C、 |
| D、 |
如图,不等式组
的解集在数轴上表示为( )
|
| A、 |
| B、 |
| C、 |
| D、 |