题目内容
考点:全等三角形的判定与性质
专题:证明题
分析:猜想:EF=2AD,EF⊥AD.
证明:延长AD到M,使得AD=DM,连接MC,延长DA交EF于N,易证BD=CD,即可证明△ABD≌△MCD,可得AB=MC,∠BAD=∠M,即可求得∠EAF=∠MCA,即可证明△AEF≌△CMA,可得EF=AM,∠CAM=∠F,即可解题.
证明:延长AD到M,使得AD=DM,连接MC,延长DA交EF于N,易证BD=CD,即可证明△ABD≌△MCD,可得AB=MC,∠BAD=∠M,即可求得∠EAF=∠MCA,即可证明△AEF≌△CMA,可得EF=AM,∠CAM=∠F,即可解题.
解答:猜想:EF=2AD,EF⊥AD.
证明:延长AD到M,使得AD=DM,连接MC,延长DA交EF于N,

∴AD=DM,AM=2AD,
∵AD是△ABC的中线,
∴BD=CD,
∵在△ABD和△MCD中,
,
∴△ABD≌△MCD,(SAS)
∴AB=MC,∠BAD=∠M,
∵AB=AE,
∴AE=MC,
∵AE⊥AB,AF⊥AC,
∴∠EAB=∠FAC=90°,
∵∠FAC+∠BAC+∠EAB+∠EAF=360°,
∴∠BAC+∠EAF=180°,
∵∠CAD+∠M+∠MCA=180°,
∴∠CAD+∠BAD+∠MCA=180°,
即∠BAC+∠MCA=180°,
∴∠EAF=∠MCA.
∵在△AEF和△CMA中,
,
∴△AEF≌△CMA,(SAS)
∴EF=AM,∠CAM=∠F,
∴EF=2AD;
∵∠CAF=90°,
∴∠CAM+∠FAN=90°,
∵∠CAM=∠F,
∴∠F+∠FAN=90°,
∴∠ANF=90°,
∴EF⊥AD.
证明:延长AD到M,使得AD=DM,连接MC,延长DA交EF于N,
∴AD=DM,AM=2AD,
∵AD是△ABC的中线,
∴BD=CD,
∵在△ABD和△MCD中,
|
∴△ABD≌△MCD,(SAS)
∴AB=MC,∠BAD=∠M,
∵AB=AE,
∴AE=MC,
∵AE⊥AB,AF⊥AC,
∴∠EAB=∠FAC=90°,
∵∠FAC+∠BAC+∠EAB+∠EAF=360°,
∴∠BAC+∠EAF=180°,
∵∠CAD+∠M+∠MCA=180°,
∴∠CAD+∠BAD+∠MCA=180°,
即∠BAC+∠MCA=180°,
∴∠EAF=∠MCA.
∵在△AEF和△CMA中,
|
∴△AEF≌△CMA,(SAS)
∴EF=AM,∠CAM=∠F,
∴EF=2AD;
∵∠CAF=90°,
∴∠CAM+∠FAN=90°,
∵∠CAM=∠F,
∴∠F+∠FAN=90°,
∴∠ANF=90°,
∴EF⊥AD.
点评:本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△ABD≌△MCD和△AEF≌△CMA是解题的关键.
练习册系列答案
相关题目