题目内容
考点:勾股定理,含30度角的直角三角形
专题:
分析:延长BC,CB 分别作AE⊥EF,DF⊥EF,得梯形AEFD,解△ABE得BE,AE,解△CDF得CF,DF,根据S四边形ABCD=S梯形AEFD-S△ABE-S△CDF即可求解.
解答:
解:如图,延长BC、CB.作AE⊥EF,DF⊥EF,垂足分别是E、F.
∵∠B=120°,
∴∠EBA=60°,
∵AE⊥EF,
∴BE=
AB=
,AE=
AB=
同理求得CF=
CD=
,DF=
.
∴EF=EB+BC+CF=8,
S△ABE=
AE•BE=
×
×
=
,
S△CDF=
CF•DF=
×
×
=
,
S梯形AEFD=
(AE+DF)×EF=16
,
∴S四边形ABCD=S梯形AEFD-S△ABE-S△CDF=
.
故答案是:
.
∵∠B=120°,
∴∠EBA=60°,
∵AE⊥EF,
∴BE=
| 1 |
| 2 |
| 3 |
| 2 |
| ||
| 2 |
3
| ||
| 2 |
同理求得CF=
| 1 |
| 2 |
| 5 |
| 2 |
5
| ||
| 2 |
∴EF=EB+BC+CF=8,
S△ABE=
| 1 |
| 2 |
| 1 |
| 2 |
3
| ||
| 2 |
| 3 |
| 2 |
9
| ||
| 8 |
S△CDF=
| 1 |
| 2 |
| 1 |
| 2 |
| 5 |
| 2 |
5
| ||
| 2 |
25
| ||
| 8 |
S梯形AEFD=
| 1 |
| 2 |
| 3 |
∴S四边形ABCD=S梯形AEFD-S△ABE-S△CDF=
47
| ||
| 4 |
故答案是:
47
| ||
| 4 |
点评:本题考查了勾股定理,含30度角的直角三角形.解答该题的难点是辅助线的作法.
练习册系列答案
相关题目
圆锥的底面半径为6,母线为15,则它的侧面积为( )
| A、65π | B、90π |
| C、130π | D、120π |
若一个代数式a2-2a-2的值为3,则3a2-6a的值为( )
| A、9 | B、3 | C、15 | D、5 |