题目内容
如图,已知抛物线y=x
-ax+a
-4a-4与x轴相交于点A和点B,与y轴相交于点D(0,8),直线DC平行于x轴,交抛物线于另一点C,动点P以每秒2个单位长度的速度从C点出发,沿C→D运动,同时,点Q以每秒1个单位长度的速度从点A出发,沿A→B运动,连接PQ、CB,设点P运动的时间为t秒.
![]()
(1)求a的值;(2)当四边形ODPQ为矩形时,求这个矩形的面积;(3)当四边形PQBC的面积等于14时,求t的值.(4)当t为何值时,△PBQ是等腰三角形?(直接写出答案)
(1)8(2)(3)(4) 【解析】【解析】 (1)∵抛物线y=x-ax+a-4a-4经过点(0,8) ∴a-4a-4=8 解得:a=6,a=-2(不合题意,舍去) ∴a的值为6 (2)由(1)可得抛物线的解析式为 y=x-6x+8 当y=0时,x-6x+8=0 解得:x=2,x=4 ∴A点坐标为(2,0),B点坐标为(4,0) 当y=...
练习册系列答案
相关题目