题目内容


如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则下列三个结论:①sin∠C>sin∠D;②cos∠C>cos∠D;③tan∠C>tan∠D中,正确的结论为(  )

A.①② B.②③  C.①②③     D.①③


D【考点】锐角三角函数的增减性;圆周角定理.

【分析】连接BE,根据圆周角定理,可得∠C=∠AEB,因为∠AEB=∠D+∠DBE,所以∠AEB>∠D,所以∠C>∠D,根据锐角三角形函数的增减性,即可判断.

【解答】解:如图,连接BE,

根据圆周角定理,可得∠C=∠AEB,

∵∠AEB=∠D+∠DBE,

∴∠AEB>∠D,

∴∠C>∠D,

根据锐角三角形函数的增减性,可得,

sin∠C>sin∠D,故①正确;

cos∠C<cos∠D,故②错误;

tan∠C>tan∠D,故③正确;

故选:D.

【点评】本题考查了锐角三角形函数的增减性,解决本题的关键是比较出∠C>∠D.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网