题目内容
已知:抛物线
.
(1)写出抛物线的开口方向、对称轴;
(2)函数y有最大值还是最小值?并求出这个最大(小)值;
(3)设抛物线与y轴的交点为P,与x轴的交点为Q,求直线PQ的函数解析式.
【解析】 (1)抛物线, ∵a= >0, ∴抛物线的开口向上, 对称轴为x=1; (2)∵a=>0, ∴函数y有最小值,最小值为-3; (3)令x=0,则 , 所以,点P的坐标为(0, ), 令y=0,则, 解得x1=-1,x2=3, 所以,点Q的坐标为(-1,0)或(3,0), 当点P(0, ),Q(-1,0)时,设直线PQ的解析式...
练习册系列答案
相关题目
十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式请你观察下列几种简单多面体模型,解答下列问题:
![]()
(1)根据上面多面体的模型,完成表格中的空格:
多面体 | 顶点数(V) | 面数(F) | 棱数(E) |
四面体 | 4 | 4 | |
长方体 | 8 | 12 | |
正八面体 | 8 | 12 | |
正十二面体 | 20 | 12 | 30 |
(2)你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是E=________;
(3)一个多面体的面数比顶点数大8,棱数为30,则这个多面体的面数是多少?
6;6;6 【解析】试题分析: (1)由图形可得; (2)观察可得顶点数+面数-棱数=2; (3)代入(2)中的式子即可得到面数; 试题解析: (1)6;6;6 (2)四面体的棱数为6;正八面体的顶点数为6;关系式为:V+F﹣E=2; (3)由题意得:F﹣8+F﹣30=2, 解得F=20.