ÌâÄ¿ÄÚÈÝ
19£®£¨1£©ÇóA¡¢B¡¢CÈýµãµÄ×ø±ê£®
£¨2£©°Ñ¡÷ABCÑØAC¶ÔÕÛ£¬µãBÂäÔÚµãB1´¦£¬AB1ÓëxÖá½»ÓÚµãD£¬ÇóÖ±ÏßBB1µÄ½âÎöʽ£®
£¨3£©ÔÚÖ±ÏßACÉÏÊÇ·ñ´æÔÚµãPʹPB1+PDµÄÖµ×îС£¿Èô´æÔÚ£¬ÇëÕÒ³öµãPµÄλÖ㬲¢Çó³öPB1+PDµÄ×îСֵ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨4£©ÔÚÖ±ÏßACÉÏÊÇ·ñ´æÔÚµãPʹ|PD-PB|µÄÖµ×î´ó£¿Èô´æÔÚ£¬ÇëÕÒ³öµãPµÄλÖ㬲¢Çó³ö|PD-PB|×î´óÖµ£®
·ÖÎö £¨1£©ÓɷǸºÊýµÄÐÔÖÊ¿ÉÇóµÃOAºÍOCµÄ³¤£¬Ôò¿ÉµÃµ½A¡¢CµÄ×ø±ê£¬ÔÙÓɾØÐεÄÐÔÖÊ¿ÉÇóµÃBµã×ø±ê£»
£¨2£©ÓÉÖá¶Ô³ÆµÄÐÔÖÊ¿ÉÖªAC¡ÍBB1£¬ÓÉ£¨1£©¿ÉÖªA¡¢CµãµÄ×ø±ê£¬¿ÉÇóµÃÖ±ÏßACµÄ½âÎöʽ£¬Ôò¿ÉÇóµÃÖ±ÏßBB1µÄ½âÎöʽ£»
£¨3£©ÓÉBºÍB1¹ØÓÚÖ±ÏßAC¶Ô³Æ¿ÉÖª£¬Á¬½ÓBDÓëÖ±ÏßAC½»ÓÚµãP£¬Ôò´ËʱPD+PB=PD+PB1£¬Âú×ãÌõ¼þ£»ÔÙÓÉÕÛµþµÄÐÔÖÊ¿ÉÖ¤Ã÷¡÷AOD¡Õ¡÷CB1D£¬ÔÚRt¡÷AODÖпÉÇóµÃOD£¬Ôò¿ÉÇóµÃCD³¤£¬ÔÚRt¡÷BCDÖÐÓɹ´¹É¶¨Àí¿ÉÇóµÃBDµÄ³¤£»
£¨4£©ÓÉÈý½ÇÐÎÈý±ß¹ØÏµ¿ÉÖª|PD-PB|£¼BD£¬Ö»Óе±PµãÔÚÏß¶ÎBDµÄÑÓ³¤Ïß»ò·´ÑÓ³¤ÏßÉÏʱ£¬²ÅÓÐ|PD-PB|=BD£¬ÏÔÈ»²»´æÔÚÕâÑùµÄµã£®
½â´ð ½â£º£¨1£©¡ß|OA-2$\sqrt{3}$|+£¨OC-6£©2=0£®
¡àOA=2$\sqrt{3}$£¬OC=6£¬
¡àA£¨0£¬2$\sqrt{3}$£©£¬C£¨6£¬0£©£¬
¡ßËıßÐÎOABCΪ¾ØÐΣ¬
¡àBC=OA=2$\sqrt{3}$£¬
¡àB£¨6£¬2$\sqrt{3}$£©£»
£¨2£©ÉèÖ±ÏßACµÄ½âÎöʽΪy=kx+b£¬
°ÑA¡¢C×ø±ê´úÈë¿ÉµÃ$\left\{\begin{array}{l}{b=2\sqrt{3}}\\{6k+b=0}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{k=-\frac{\sqrt{3}}{3}}\\{b=2\sqrt{3}}\end{array}\right.$£¬
¡àÖ±ÏßACµÄ½âÎöʽΪy=-$\frac{\sqrt{3}}{3}$x+2$\sqrt{3}$£¬
ÓÉÕÛµþµÄÐÔÖÊ¿ÉÖªAC¡ÍBB1£¬
¡à¿ÉÉèÖ±ÏßBB1µÄ½âÎöʽΪy=$\sqrt{3}$x+m£¬
°ÑBµã×ø±ê´úÈë¿ÉµÃ2$\sqrt{3}$=6$\sqrt{3}$+m£¬
½âµÃm=-4$\sqrt{3}$£¬
¡àÖ±ÏßBB1µÄ½âÎöʽΪy=$\sqrt{3}$x-4$\sqrt{3}$£»
£¨3£©ÓÉ£¨2£©¿ÉÖªBºÍB1¹ØÓÚÖ±ÏßAC¶Ô³Æ£¬
Èçͼ1£¬Á¬½ÓBD½»ACÓÚµãP£¬![]()
ÔòPB=PB1£¬
¡àPD+PB=PD+PB1=BD£¬
¡à´ËʱPD+PB1×îС£¬
ÓÉÕÛµþµÄÐÔÖÊ¿ÉÖªB1C=BC=OA=2$\sqrt{3}$£¬¡ÏAOD=¡ÏCB1D=90¡ã£¬
ÔÚ¡÷AODºÍ¡÷CB1DÖУ¬
$\left\{\begin{array}{l}{¡ÏAOD=¡ÏC{B}_{1}C}\\{¡ÏADC=¡ÏCD{B}_{1}}\\{AO={B}_{1}C}\end{array}\right.$£¬
¡à¡÷AOD¡Õ¡÷CB1D£¨AAS£©£¬
¡àAD=DC£¬OD=DB1£¬
ÉèOD=x£¬ÔòDC=AD=6-x£¬ÇÒOA=2$\sqrt{3}$£¬
ÔÚRt¡÷AODÖУ¬Óɹ´¹É¶¨Àí¿ÉµÃAO2+OD2=AD2£¬¼´£¨2$\sqrt{3}$£©2+x2=£¨6-x£©2£¬½âµÃx=2£¬
¡àCD=AD=6-2=4£¬
ÔÚRt¡÷BCDÖУ¬Óɹ´¹É¶¨Àí¿ÉµÃBD=$\sqrt{C{D}^{2}+B{C}^{2}}$=$\sqrt{{4}^{2}+£¨2\sqrt{3}£©^{2}}$=2$\sqrt{7}$£¬
×ÛÉÏ¿ÉÖª´æÔÚʹPB1+PDµÄÖµ×îСµÄµãP£¬PB1+PDµÄ×îСֵΪ2$\sqrt{7}$£»
£¨4£©Èçͼ2£¬Á¬½ÓPB¡¢PD¡¢BD£¬
µ±pÔÚµãAʱ|PD-PB|×î´ó£¬BÓëB1¶Ô³Æ£¬|PD-PB|=|PD-PB1|£¬¸ù¾ÝÈý½ÇÐÎÈý±ß¹ØÏµ|PD-PB1|СÓÚ»òµÈÓÚDB1£¬¹Ê|PD-PB1|µÄ×î´óÖµµÈÓÚDB1£®
¡ßAB1=AB=6£¬
AD=$\sqrt{O{A}^{2}+O{D}^{2}}$=4£¬
¡àDB1=2£¬![]()
¡àÔÚÖ±ÏßACÉÏ£¬´æÔÚµãPʹ|PD-PB|µÄÖµ×î´ó£¬×î´óֵΪ£º2£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÒ»´Îº¯ÊýµÄ×ÛºÏÓ¦Óã¬Éæ¼°´ý¶¨ÏµÊý·¨¡¢¾ØÐεÄÐÔÖÊ¡¢Öá¶Ô³ÆµÄÐÔÖÊ¡¢È«µÈÈý½ÇÐεÄÅж¨ºÍÐÔÖʵÈ֪ʶ£®ÔÚ£¨1£©ÖÐ×¢Òâ·Ç¸ºÊýµÄÐÔÖʵÄÓ¦Óã¬ÔÚ£¨2£©ÖÐÕÆÎÕÏ໥´¹Ö±µÄÁ½Ö±ÏߵĽâÎöʽµÄ¹ØÏµÊǽâÌâµÄ¹Ø¼ü£¬ÔÚ£¨3£©ÖÐÈ·¶¨³öPµãµÄλÖÃÊǽâÌâµÄ¹Ø¼ü£¬ÔÚ£¨4£©ÖÐ×¢ÒâÈý½ÇÐÎÈý±ß¹ØÏµµÄÓ¦Óã®±¾Ì⿼²é֪ʶµã½Ï¶à£¬×ÛºÏÐÔ½ÏÇ¿£¬ÄѶȽϴó£®
| A£® | x6¡Âx2=x3 | B£® | £¨x-1y£©3=x-3y3 | C£® | 2x3+3x2=6x5 | D£® | £¨x+1£©2=x2+1 |
| A£® | $\sqrt{-7}$ | B£® | $\root{3}{2}$ | C£® | $\sqrt{{x}^{2}+1}$ | D£® | $\root{3}{\frac{b}{a}}$ |
| A£® | 2 | B£® | 3 | C£® | 4 | D£® | 5 |
| A£® | Á½Ö±ÏßÓëµÚÈýÌõÖ±ÏßÏཻ£¬Í¬Î»½ÇÏàµÈ | |
| B£® | Á½Ö±ÏßÓëµÚÈýÌõÖ±ÏßÏཻ£¬ÄÚ´í½ÇÏàµÈ | |
| C£® | µÈÑüÈý½ÇÐεÄÁ½µ×½ÇÏàµÈ | |
| D£® | Á½Ö±Ï߯½ÐУ¬Í¬ÅÔÄÚ½ÇÏàµÈ |