题目内容

如图在△ABC中,AB=AC,∠BAC=120°,EF为AB的垂直平分线,EF交BC于点F,交AB于点E.求证:BF=
1
2
FC.
考点:线段垂直平分线的性质,含30度角的直角三角形
专题:
分析:连接AF,根据等腰三角形性质和三角形内角和定理求出∠B=∠C=30°,根据线段的垂直平分线的性质得出BF=AF,推出∠BAF=∠B=30°,求出∠FAC=90°,根据含30度角的直角三角形性质求出即可.
解答:证明:连接AF,
∵AB=AC,∠BAC=120°,
∴∠B=∠C=30°,
∵EF为AB的垂直平分线,
∴BF=AF,
∴∠BAF=∠B=30°,
∴∠FAC=120°-30°=90°,
∵∠C=30°,
∴AF=
1
2
CF,
∵BF=AF,
∴BF=
1
2
FC.
点评:本题考查了线段垂直平分线,等腰三角形性质,三角形内角和定理,含30度角的直角三角形性质的应用,主要考查学生综合运用性质进行推理和计算的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网