题目内容

4.如图所示,已知△ABC和△DCE均是等边三角形,点B,C,E在同一条直线上,AE与BD交于点O,AE与CD交于点G,AC与BD交于点F,连接OC,FG,则下列结论中:①AE=BD;②AG=BF;③FG∥BE.其中正确结论的个数(  )
A.1个B.2个C.3个D.4个

分析 首先根据等边三角形的性质,得到BC=AC,CD=CE,∠ACB=∠BCD=60°,然后由SAS判定△BCD≌△ACE,根据全等三角形的对应边相等即可证得①正确;又由全等三角形的对应角相等,得到∠CBD=∠CAE,根据ASA,证得△BCF≌△ACG,即可得到②正确,同理证得CF=CG,得到△CFG是等边三角形,易得③正确.

解答 解:∵△ABC和△DCE均是等边三角形,
∴BC=AC,CD=CE,∠ACB=∠ECD=60°,
∴∠ACB+∠ACD=∠ACD+∠ECD,∠ACD=60°,
∴∠BCD=∠ACE,
在△BCD与△ACE中,
$\left\{\begin{array}{l}{BC=AC}\\{∠BCD=ACE}\\{CD=CE}\end{array}\right.$,
∴△BCD≌△ACE(SAS),
∴AE=BD,(①正确)
∠CBD=∠CAE,
∵∠BCA=∠ACG=60°,
在△BCF与△ACG中,
$\left\{\begin{array}{l}{∠CBD=∠CAG}\\{BC=AC}\\{∠BCA=∠ACG}\end{array}\right.$,
∴△BCF≌△ACG(ASA),
∴AG=BF,(②正确);
同理:△DFC≌△EGC(ASA),
∴CF=CG,
∴△CFG是等边三角形,
∴∠CFG=∠FCB=60°,
∴FG∥BE,(③正确).
故选C.

点评 此题考查了等边三角形的判定与性质与全等三角形的判定与性质.此题图形比较复杂,解题的关键是仔细识图,合理应用数形结合思想.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网